Modification of the Electronic Structure of Few-Layer Graphene Grown on β-SiC(001) by Neutral Red Dye

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Graphene layers on semiconducting substrates, modified using covalent and non-covalent chemical functionalization, can be utilized for fabrication of hybrid structures combining physical properties of graphene and organic molecules. In this paper the results of investigations of the atomic and electronic structure of ultrathin graphene layers on β-SiC/Si(001) wafers modified using phenazine dye Neutral Red are presented. Continuous graphene films consisting on several atomic layers were synthesized on β-SiC/Si(001) wafers using high-temperature annealing in ultrahigh vacuum. The synthesized graphene layers were chemically modified in a solution of diazonium salt of the Neutral Red dye under white light illumination. The results of the scanning tunneling microscopy and spectroscopy experiments demonstrate the formation of a composite phenazine/graphene structure with a large energy gap in all surface regions. The molecules can be oriented preferentially parallel and perpendicular to the graphene layers and form locally ordered structures with rectangular and oblique unit cells. The electronic energy spectrum and band energy gap in different surface areas depend on the local atomic structure and the molecule’s orientation relative to the surface. According to the density functional theory calculations, local modifications of the electronic structure and band energy gap can be related to deformations (compression or extension) of the phenazine dye molecules because of their interaction with the topmost graphene layer.

Sobre autores

A. Chaika

Institute of Solid State Physics of the RAS

Autor responsável pela correspondência
Email: chaika@issp.ac.ru
Russia, 142432, Chernogolovka

I. Aristova

Institute of Solid State Physics of the RAS

Email: chaika@issp.ac.ru
Russia, 142432, Chernogolovka

Bibliografia

  1. Wallace P.R. // Phys. Rev. 1947. V. 71. P. 622. https://www.doi.org/10.1103/PhysRev.71.622
  2. Novoselov K.S., Geim A.K., Morozov S.V, Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. // Science. 2004. V. 306. P. 666. https://www.doi.org/10.1126/science.1102896
  3. Aristov V.Yu., Urbanik G., Kummer K., Vyalikh D.V., Molodtsova O.V., Preobrajenski A.B., Hess C., Büchner B., Vobornik I., Fujii J., Panaccione G., Ossipyan Yu.A., Knupfer M. // Nano Lett. 2010. V. 10. P. 992. https://www.doi.org/10.1021/nl904115h
  4. Chaika A.N., Molodtsova O.V., Zakharov A.A., Marchenko D., Sánchez-Barriga J., Varykhalov A., Shvets I.V., Aristov V.Y. // Nano Res. 2013. V. 6. P. 562. https://www.doi.org/10.1007/s12274-013-0331-9
  5. Chaika A.N., Molodtsova O.V, Zakharov A.A., Marchenko D., Sánchez-Barriga J., Varykhalov A., Babenkov S.V., Portail M., Zielinski M., Murphy B.E., Krasnikov S.A., Lübben O., Shvets I.V., Aristov V.Y. // Nanotechnology. 2014. V. 25. P. 135605. https://www.doi.org/10.1088/0957-4484/25/13/135605
  6. Chaika A.N., Aristov V.Y., Molodtsova O.V. // Prog. Mater. Sci. 2017. V. 89. P. 1. https://www.doi.org/10.1016/j.pmatsci.2017.04.010
  7. Wu H.-C., Chaika A.N., Huang T.-W., Syrlybekov A., Abid M., Aristov V.Y., Molodtsova O.V., Babenkov S.V., Marchenko D., Sánchez-Barriga J., Mandal P.S., Varykhalov, A.Y., Niu Y., Murphy B.E., Krasnikov S.A., Lübben O., Wang J.J., Liu H., Yang L., Zhang H., Abid M., Janabi Y.T., Molotkov S.N., Chang C.-R., Shvets I. // ACS Nano. 2015. V. 9. P. 8967. https://www.doi.org/10.1021/acsnano.5b02877
  8. Wu H.-C., Chaika A.N., Hsu M.-C., Huang T.-W., Abid M., Abid M., Aristov V.Y., Molodtsova O.V., Babenkov S.V., Niu Y., Murphy B.E., Krasnikov S.A., Lübben O., Liu H., Chun B.S., Janabi Y.T., Molotkov S.N., Shvets I.V., Lichtenstein A.I., Katsnelson M.I., Chang C.-R. // Nat. Commun. 2017. V. 8. P. 14453. https://www.doi.org/10.1038/ncomms14453
  9. Aristov V.Yu., Chaika A.N., Molodtsova O.V., Babenkov S.V., Locatelli A., Mentes T.O., Sala A., Potorochin D., Marchenko D., Murphy B., Walls B., Zhussupbekov K., Shvets I.V. // ACS Nano. 2019. V. 13. P. 526. https://www.doi.org/10.1021/acsnano.8b07237
  10. Ouerghi A., Ridene M., Balan A., Belkhou R., Barbier A., Gogneau N., Portail M., Michon A., Latil S., Jegou P., Shukla A. // Phys. Rev. B. 2011. V. 83. P. 205429. https://www.doi.org/10.1103/PhysRevB.83.205429
  11. Gogneau N., Balan A., Ridene M., Shukla A., Ouerghi A. // Surf. Sci. 2012. V. 606. P. 217. https://www.doi.org/10.1016/j.susc.2011.09.021
  12. Ouerghi A., Balan A., Castelli C., Picher M., Belkhou R., Eddrief M., Silly M.G., Marangolo M., Shukla A., Sirotti F. // Appl. Phys. Lett. 2012. V. 101. P. 021603. https://www.doi.org/10.1063/1.4734396
  13. Abe S., Handa H., Takahashi R., Imaizumi K., Fukidome H., Suemitsu M. // J. Appl. Phys. 2011. V. 50. P. 070102. https://www.doi.org/10.1143/JJAP.50.070102
  14. Velez-Fort E., Silly M.G., Belkhou R., Shukla A., Sirotti F., Ouerghi A. // Appl. Phys. Lett. 2013. V. 103. P. 083101. https://www.doi.org/10.1063/1.4818547
  15. Gogneau N., Ben GouiderTrabelsi A., G. Silly M., Ridene M., Portail M., Michon A., Oueslati M., Belkhou R., Sirotti F., Ouerghi A. // Nanotechnol. Sci. Appl. 2014. V. 7. P. 85. https://www.doi.org/10.2147/NSA.S60324
  16. Hens P., Zakharov A.A., Iakimov T., Syväjärvi M., Yakimova R. // Carbon. 2014. V. 80. P. 823. https://www.doi.org/10.1016/j.carbon.2014.09.041
  17. Suemitsu M., Jiao S., Fukidome H., Tateno Y., Makabe I., Nakabayashi T. // J. Phys. D.: Appl. Phys. 2014. V. 47. P. 094016. https://www.doi.org/10.1088/0022-3727/47/9/094016
  18. Zhou S.Y., Gweon G.-H., Fedorov A., First d. P.N., De Heer W., Lee D.-H., Guinea F., Neto A.C., Lanzara A. // Nat. Mater. 2007. V. 6. P. 770. https://www.doi.org/10.1038/nmat2003
  19. Xia F., Farmer D.B., Lin Y.-m., Avouris P. // Nano Lett. 2010. V. 10. P. 715. https://www.doi.org/10.1021/nl9039636
  20. Choi J., Kim K.J., Kim B., Lee H., Kim S. // J. Phys. Chem. C. 2009. V. 113. P. 9433. https://www.doi.org/10.1021/jp9010444
  21. Niyogi S., Bekyarova E., Itkis M.E., Zhang H., Shepperd K., Hicks J., Sprinkle M., Berger C., Lau C.N., de Heer W.A, Conrad E.H., Haddon R.C. // Nano Lett. 2010. V. 10. P. 4061. https://www.doi.org/10.1021/nl1021128
  22. Georgakilas V., Otyepka M., Bourlinos A.B., Chandra V., Kim N., Kemp K.C., Hobza P., Zboril R., Kim K.S. // Chem. Rev. 2012. V. 112. P. 6156. https://www.doi.org/10.1021/cr3000412
  23. Martin D.P., Tariq A., Richards B.D.O., Jose G., Krasnikov S.A., Kulak A., Sergeeva N.N. // Chem. Commun. 2017. V. 53. P. 10715. https://www.doi.org/10.1039/C7CC05158A
  24. Sergeeva N.N., Chaika A.N., Walls B., Murphy B.E., Walshe K., Martin D.P., Richards B.D.O., Jose G., Fleischer K., Aristov V.Y., Molodtsova O.V., Shvets I.V., Krasnikov S.A. // Nanotechnology. 2018. V. 29. P. 275705. https://www.doi.org/10.1088/1361-6528/aabf11.
  25. Potorochin D.V., Chaika A.N., Molodtsova O.V., Aristov V.Yu., Marchenko D.E., Smirnov D.A., Makarova A.A., Walls B., Zhussupbekov K., Walshe K., Shvets I.V., Ciobanu A.S., Rabchinskii M.K., Ulin N.V., Baidakova M.V., Brunkov P.N., Molodtsov S.L. // Appl. Surf. Sci. 2022. V. 585. P. 152542. https://www.doi.org/10.1016/j.apsusc.2022.152542
  26. Cardona P.-J., Soto C., Martin C., Giquel B., Agusti G., Guirado E., Sirakova T., Kolattukudy P., Julian E., Luquin M. // Microbes Infect. 2006. V. 8. P. 183. https://www.doi.org/10.1016/j.micinf.2005.06.011
  27. Wang Y.T., Zhao F.L., Li K.A., Tong S.Y. // Analytica Chimica Acta. 1999. V. 396 P. 75. https://www.doi.org/10.1016/S0003-2670(99)00365-7
  28. LaManna J.C., McCracken K.A. // Anal. Biochem. 1984. V. 142. P. 117. https://www.doi.org/10.1016/0003-2697(84)90525-6
  29. Fautz R., Husein B., Hechenberger C. // Mutat. Res. 1991. V. 253. P. 173. https://www.doi.org/10.1016/0165-1161(91)90130-Z
  30. Fischer B.B., Krieger-Liszkay A., Eggen R.I. // Environ. Sci. Technol. 2004. V. 38. P. 6307. https://www.doi.org/10.1021/es049673y
  31. Fischer B.B., Krieger-Liszkay A., Eggen R.I. // Plant Sci. 2005. V. 168. P. 747. https://www.doi.org/10.1016/j.plantsci.2004.10.008
  32. Goicoechea J., Zamarreño C.R., Matias I., Arregui F. // Sensors and Actuators B: Chemical. 2008. V. 132. P. 305. https://www.doi.org/10.1016/j.snb.2008.01.056
  33. Bauldreay J., Archer M. // Electrochimica Acta. 1983. V. 28. P. 1515. https://www.doi.org/10.1016/0013-4686(83)85210-4
  34. Jana A.K., Bhowmik B.B. // J. Photochem. Photobiol. A: Chem. 1999. V. 122. P. 53. https://www.doi.org/10.1016/S1010-6030(98)00467-5
  35. Jana A.K. // J. Photochem. Photobiol. A: Chem. 2000. V. 132. P. 1. https://www.doi.org/10.1016/S1010-6030(99)00251-8
  36. Giannozzi P., Andreussi O., Brumme T., Bunau O., Buongiorno Nardelli M., Calandra M., Car R., Cavazzoni C., Ceresoli D., Cococcioni M., Colonna N., Carnimeo I., Dal Corso A., de Gironcoli S., Delugas P., DiStasio R.A., Ferretti A., Floris A., Fratesi G., Fugallo G., Gebauer R., Gerstmann U., Giustino F., Gorni T., Jia J., Kawamura M., Ko H.-Y., Kokalj A., Küçükbenli E., Lazzeri M., Marsili M., Marzari N., Mauri F., Nguyen N.L., Nguyen H.-V., Otero-de-la-Roza A., Paulatto L., Poncé S., Rocca D., Sabatini R., Santra B., Schlipf M., Seitsonen A.P., Smogunov A., Timrov I., Thonhauser T., Umari P., Vast N., Wu X., Baroni S. // J. Phys.: Condens. Matter. 2017. V. 29. P. 465901. https://www.doi.org/10.1088/1361-648X/aa8f79
  37. Perdew J.P., Zunger A. // Phys. Rev. B. 1981. V. 23. P. 5048. https://www.doi.org/10.1103/PhysRevB.23.5048
  38. Liu G., Gan Y., Quhe R., Lu P. // Chem. Phys. Lett. 2018. V. 709. P. 65. https://www.doi.org/10.1016/j.cplett.2018.08.029
  39. Horcas I., Fernández R., Gómez-Rodríguez J.M., Colchero J., Gómez-Herrero J., Baró A.M. // Rev. Sci. Instrum. 2007. V. 78. P. 013705. https://www.doi.org/10.1063/1.2432410

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (1MB)
3.

Baixar (368KB)
4.

Baixar (1MB)
5.

Baixar (763KB)

Declaração de direitos autorais © А.Н. Чайка, И.М. Аристова, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies