Investigation of the Crystal Structure of Nd5Mo3O16 + δ in the Pressure Range 0–5.9 GPа

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Neodymium molybdate with a cubic fluorite-like structure was obtained by solid state reactions from metal oxides. The formation of the final product occurs through the formation of a monoclinic structure of Ln2MoO6 type (space group C2/c) at 700°C, which probably contains vacancies in neodymium and oxygen lattices. Neodymium molybdate obtained at 900°C crystallizes in the space group Pn\(\bar {3}\)n with the cell parameter a ≈ 11.039 Å. The crystal structure of neodymium molybdate obtained at 700 and 900°C was studied by neutron diffraction and atomistic modeling using the GULP program in the pressure range 0–5.9 GPa, which demonstrated the stability of the cubic structure at elevated pressure.

Sobre autores

K. Chebyshev

Donetsk National University

Autor responsável pela correspondência
Email: chebyshev.konst@mail.ru
Russia, 283001, Donetsk

V. Turchenko

Joint Institute for Nuclear Research

Autor responsável pela correspondência
Email: turchenko@jinr.ru
Russia, 141980, Dubna

S. Kichanov

Joint Institute for Nuclear Research

Autor responsável pela correspondência
Email: ekich@nf.jinr.ru
Russia, 141980, Dubna

Bibliografia

  1. Smet F.D., Devillers M., Poleunis C., Bertrand P. // J. Chem. Soc. Faraday Trans. 1998. V. 94. P. 941. https://doi.org/10.1039/A707883H
  2. Lopez Nieto J.M., Bielsa R., Kremenic G., Fierro J.L.G. // Studies Sur. Sc. Catalysis. 1990. V. 55. P. 295. https://doi.org/10.1016/S0167-2991(08)60160-3
  3. Yu R., Fan A., Yuan M., Li T., Tu Q., Wang J., Rotello V. // Opt. Mater. Express. 2016. V. 6. № 7. P. 3469. https://doi.org/10.1364/OME.6.002397
  4. Qi S., Xie H., Huang Y., Kim S.I., Seo H. // Opt. Mater. Express. 2014. V. 4. № 2. P. 190. https://doi.org/10.1364/OME.4.000190
  5. Tsai M., Greenblatt M., McCarroll W. // Chem. Mater. 1989. V. 1. № 2. P. 253. https://doi.org/10.1021/CM00002A017
  6. Voronkova V.I., Kharitonova E.P., Belov D.A. // Solid State Ionics. 2012. V. 225. № 4. P. 654. https://doi.org/10.1016/J.SSI.2012.03.002
  7. Voronkova V.I., Leonidov I.A., Kharitonova E.P., Belov D.A., Patrakeev M.V., Leonidova O.N., Koz- hevnikov V.L. // J. Alloys Compd. 2014. V. 615. № 5. P. 395. https://doi.org/10.1016/j.jallcom.2014.07.019
  8. Hubert P.-H. // Chemie Minerale. C. 1970. V. 271. P. 1179.
  9. Cortese A.J., Abeysinghe D., Wilkins B., Smith M.D., Rassolov V., Loye H. // Cryst. Growth Des. 2016. V. 16. № 8. P. 4225. https://doi.org/10.1021/ACS.CGD.6B00201
  10. Biendicho J.J., Playford H.Y., Rahman S.M.H., Norberg S.T., Eriksson S.G., Hull S. // Inorg. Chem. 2018. V. 57. № 12. P. 7025. https://doi.org/10.1021/acs.inorgchem.8b00734
  11. Martínez-Lope M.J., Alonso J.A., Sheptyakov D., Pomjakushin V. // J. Solid State Chem. 2010. V. 183. P. 2974. https://doi.org/10.1016/J.JSSC.2010.10.015
  12. Hubert P.-H., Michel P., Thozet A. // Compt. Rend. Acad. Sc. Paris. 1973. V. 276. P. 1779.
  13. Chebyshev K.A., Get’man E.I., Pasechnik L.V., Ardanova L.I., Korotina D.V. // Inorg. Mater. 2015. V. 51. № 10. P. 1033. https://doi.org/10.1134/S0020168515100040
  14. Чебышев К.А., Гетьман Е.И., Игнатов А.В., Пасечник Л.В., Селикова Н.И. // Вестн. Донецкого нац. ун-та. Сер. А. 2017. № 4. С. 114.
  15. Чебышев К.А., Игнатов А.В., Пасечник Л.В., Селикова Н.И. // Вестн. ВГУ. Сер. Химия. Биология. Фармация. 2021. № 4. С. 25.
  16. Kozlenko D., Kichanov S., Lukin E., Savenko B. // Crystals. 2018. V. 8. № 8. P. 331. https://doi.org/10.3390/cryst8080331
  17. Balagurov A.M. // Neutron News. 2005. V. 16. P. 8. https://doi.org/10.1080/10446830500454346
  18. Rodriguez–Carvajal J. // Physica B. 1993. V. 192. № 1–2. P. 55. https://doi.org/10.1016/0921-4526(93)90108-I
  19. Roisnel T., Rodriguez-Carvajal J. // Mat. Sci. Forum. Proc. Seventh Eur. Powder Diffraction Conf. (EPDIC 7). Barcelona, 2000. P. 118.
  20. Gale J.D., Rohl A.L. // Mol. Simul. 2003. V. 29. P. 291. https://doi.org/10.1080/0892702031000104887
  21. Brixner L.H., Sleight A.W., Licis M.S. // J. Solid State Chem. 1972. V. 5. P. 186. https://doi.org/10.1016/0022-4596(72)90027-8
  22. Alonso J., Rivillas F., Martínez-Lope M.J., Pomjakushin V. // J. Solid State Chem. 2004. V. 177. № 7. P. 2470. https://doi.org/10.1016/j.jssc.2004.03.046
  23. Alekseeva O., Gagor A., Pietraszko A., Sorokina N., Bolotina N., Artemov V., Kharitonova E., Voronkova V. // Z. Kristallogr. 2012. V. 227. № 12. P. 869. https://doi.org/10.1524/zkri.2012.1563
  24. Ishikawa Y., Danilkin S.A., Avdeev M., Voronkova V.I., Sakuma T. // Solid State Ionics. 2016. V. 288. P. 303. https://doi.org/10.1016/j.ssi.2015.12.005

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (58KB)
3.

Baixar (300KB)
4.

Baixar (193KB)
5.

Baixar (36KB)
6.

Baixar (63KB)
7.

Baixar (50KB)

Declaração de direitos autorais © К.А. Чебышев, В.А. Турченко, С.Е. Кичанов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies