Asymptotic method in problems of elliptic boundary layer in shells of revolution under impacts of normal type

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The asymptotic method for studying the behavior of non-stationary waves in thin shells generally involves using the separation method of solutions in the phase plane into components with different indices of variability in coordinates and time. In the case of normal type of impact, one of these components is an elliptical boundary layer occurring in a small neighborhood of the surface Rayleigh wave front. Its equations are derived by the method of asymptotic integration from the three-dimensional equations of elasticity theory. And they are partial differential equations of elliptic type with boundary conditions specified by hyperbolic equations. The article presents a general asymptotic method for solving the equations of the boundary layer under consideration in the case of the arbitrary form shell of revolution as an example. It is based on a preliminary study of basic problems for shells of revolution of zero Gaussian curvature using integral Laplace and Fourier transforms. The equations of this boundary layer for different types of normal loading have a common characteristic property: the asymptotically principal components coincide with the corresponding equations for shells of revolution of zero Gaussian curvature. This property, together with the property of different variability of the components of the stress-strain state and geometric parameters, allows, when using the method of exponential representations in the Laplace transform space, to functionally relate the solutions in the case of the arbitrary form shell of revolution with the solutions for shells of revolution of zero Gaussian curvature. The developed general approach is applied in this article to solving the problem of an elliptical boundary layer in shells of revolution under normal type loading. A numerical calculation of the shear stress for the obtained asymptotic solution in the case of a spherical shell is given.

Толық мәтін

Рұқсат жабық

Авторлар туралы

I. Kirillova

Saratov State University

Хат алмасуға жауапты Автор.
Email: iv@sgu.ru
Ресей, Saratov

Әдебиет тізімі

  1. Nigul U. Regions of effective application of the methods of three-dimensional and two-dimensional analysis of transient stress waves in shells and plates // Int. J. Solid and Structures. V. 5. № 6. 1969. P. 607–627.
  2. Nigul U. Comparison of results of an analysis of transient waves in shells and plates by elasticity theory and approximate theories// J. of Applied Mathematics and Mechanics. 1969. V. 33. № 2. P. 290–309.
  3. Kirillova I.V., Kossovich L.Yu. Asymptotic theory of wave processes in shells of revolution under surface impact and normal end actions // Mechanics of Solids. 2022. V. 57. № 2. P. 232–243. https://doi.org/10.31857/S057232992202012X
  4. Kossovich L.Yu., Kirillova I.V. Transient waves in shells of revolution under normal shock loading // Topical problems in theoretical and applied mechanics, Elite Publishing House Pvt. Ltd. New Delhi. 2013. P. 186–201.
  5. Kirillova I.V., Kossovich L.Yu. Analysis of solutions for elliptic boundary layer in cylindrical shells at edge shock loading // Advanced Structured Materials. Recent Approaches in the Theory of Plates and Plate-Like Structures. 2022. V. 151. Chapter 11. P. 131–140.
  6. Kirillova I.V. Elliptic boundary layer in shells of revolution under surface shock loading of normal type // Mechanics of Solids. 2024. V. 59. № 5. P. 2686–2693.
  7. Polyanin A.D., Manzhirov A.V. // Mechanics of Solids. 2024. V. 59. № 5. P. 2686–2693.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Semi-infinite shell of rotation.

Жүктеу (31KB)
3. Fig. 2. Geometry of the spherical shell section.

Жүктеу (28KB)
4. 3. Graph of the tangential stress s13 in a small neighborhood of the conditional Rayleigh wave front at times t0 = 1 (a) and t0 = 2 (b) for the values of the normal coordinate z = -0.99, -0.96, -0.92 (curves, respectively, 1, 2, 3).

Жүктеу (87KB)

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».