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В представляемой работе механика микрополярных упругих тел распро-
страняется на более общие термоупругие среды с целью учета влияния тем-
пературы на их механическое поведение. Поскольку термоупругая микро-
полярная среда проводит тепло, то возникает необходимость включения 
того или иного механизма теплопроводности в  основные соотношения 
микрополярной термоупругости. Выполнено построение модели термо-
упругого микрополярного тела CGNII на  основе волнового принципа 
передачи тепла (т.е. теплопроводности второго типа), характеризующейся 
нулевым внутренним производством энтропии. Все основные уравнения 
развиваемой теории выводятся из конвенциональных уравнений баланса 
механики континуума и фундаментального термодинамического неравен-
ства. Определяющие уравнения линейного анизотропного термоупругого 
микрополярного тела CGNII конструируются с помощью квадратичной 
энергетической формы. Подробно исследуется случай гемитропной среды, 
когда компоненты одного из  определяющих псевдотензоров четвертого 
ранга оказываются чувствительными к зеркальным отражениям трехмер-
ного пространства. В терминах трансляционных перемещений, микропо-
воротов и  температурного смещения получена замкнутая система диф-
ференциальных уравнений, предназначенная для решения прикладных 
задач термомеханики, связанных с волновой передачей тепла в микропо-
лярных упругих средах. 
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1. Предварительные сведения и вводные замечания. Современные микро-
полярные модели сплошных деформируемых тел весьма часто реализуются 
на представлении о микроповоротах (микровращениях), присущих каждо-
му элементу микрополярного континуума. Указанное понятие унаследовано 
из оригинальной работы E. Cosserat и F. Cosserat (1909 г., [1]) и обеспечивает 
наличие дополнительных степеней свободы при деформации сплошной сре-
ды. Два кинематически независимых векторных поля, характеризующих де-
формацию микрополярного континуума (поле трансляционных перемещений 
и поле микроповоротов (или спинорных перемещений)), вводятся в механику 
микрополярного упругого тела на основании хорошо известных результатов 
классической аналитической механики, касающихся перемещений свободных 
абсолютно твердых тел в трехмерном пространстве. Эти результаты принадле-
жат (или приписываются) Шалю (M. Chasles) и выступают как теоретический 
фундамент исследований движений абсолютно твердых тел в трехмерном про-
странстве. Существенные для механики микрополярных тел положения кине-
матики абсолютно твердых тел и используемая при этом специальная терми-
нология разъясняются в [2]. В этой же работе можно найти указания на лите-
ратурные первоисточники.

Соответствующая концепции микроповоротов теория микрополярного 
термоупругого тела получила свой более или менее законченный вид в ряде 
известных публикаций, относящихся к 50–60-м гг. прошлого века. Все они 
были “просуммированы” (иногда, правда, без необходимой в целом ряде слу-
чаев полноты) в более поздней монографии В. Новацкого [3], которая к на-
стоящему времени считается устаревшей1, особенно в плане описания связан-
ных термоупругих неизотропных сред (и прежде всего гемитропных) и вклю-
чения нестандартных механизмов передачи тепла: речь здесь безусловно идет 
о моделях теплопроводности микрополярных упругих тел второго (CGNII) 
и третьего типов (CGNIII). Первая из них появилась в работе [4] и в даль-
нейшем получила широкое распространение в механике термоупругих тел; 
указания на эту модель узнаваемы в современной научной литературе по со-
кращению GNII.

Заметим, что теплопроводность второго типа, т.е. в форме незатухающих, 
распространяющихся с конечной скоростью термоупругих волн, представля-
ет собой наиболее интересный вариант термомеханики микрополярных тел, 
поскольку в этом случае процесс распространения тепла не сопровождает-
ся внутренним производством энтропии и затуханием термоупругой волны 
в процессе ее распространения.

В настоящей работе выполнено построение теоретической модели вто-
рого типа (type-II) анизотропного теплопроводящего микрополярного упру-
гого тела (CGNII micropolar thermoelasticity). В качестве примера в терминах 
трансляционных перемещений, микроповоротов и температурного смеще-
ния получена замкнутая система дифференциальных уравнений гемитропной 
микрополярной термоупругости, вызывающая значительный интерес с точки 
зрения исследования прикладных проблем.

1  Ценность монографии В. Новацкого существенно снижается наличием большого ко-
личества опечаток в основных уравнениях и незавершенностью изложения, например 
в случае исследования плоских гармонических термоупругих волн, выступающих как 
связка температурного инкремента, трансляционных перемещений и микровращений.
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Представляемая работа в значительной степени использует терминологию, 
обозначения, методы и результаты, изложенные в более ранней статье [5]. 
Особенно это касается модели микрополярного гемитропного тела, которую 
удалось развить, не опираясь на представления изотропных тензоров четвер-
того ранга [6], а привлекая полную систему неприводимых рациональных 
инвариантов системы трех изотропных определяющих тензоров четвертого 
ранга. Стоит также отметить, что в указанной статье микрополярная теория 
упругости была построена исходя из принципа виртуальных перемещений, 
что позволило трактовать силовые и моментные напряжения как множите-
ли Лагранжа, т.е. как силы и пары, возникающие в ответ (и в виде реакции) 
на наложение на деформируемое тело дополнительных связей, обеспечиваю-
щих его полную “заморозку”. Все выше сказанное позволяет рассматривать 
настоящую публикацию в качестве естественного продолжения и развития 
исследований, выполненных в работе [5].

Несколько слов следует сказать о псевдотензорных представлениях в тер-
момеханике микрополярных сред. Микрополярная теория упругости геми-
тропного тела в  принципе неразвиваема без привлечения псевдовектора 
микроповоротов нечетного алгебраического веса (обычно +1 или −1) и, как 
следствие, определяющего псевдотензора четвертого ранга нечетного алгеб
раического веса. Лишь на заключительном этапе с помощью степеней псев-
дотензорных единиц удается устранить все без исключения псевдотензорные 
объекты и в конце концов получить формулировку исключительно в терминах 
абсолютных тензоров. В настоящей работе (так же как и в [5]) псевдотензор-
ные объекты не используются, т.е. неявно предполагается финальный переход 
к соответствующим абсолютным тензорам во всех уравнениях.

Так же как и в работе [5], изложение с самого начала задумывалось в пол-
ностью ковариантной форме, пригодной для произвольной криволинейной 
координатной системы x j ( j = 1,2,3) и наиболее подходящей для решения 
прикладных задач микрополярной термоупругости.

2. Конвенциональные уравнения баланса в линейной термомеханики микро-
полярных сред. Как было упомянуто в первом разделе статьи, с микрополяр-
ной средой связываются два кинематически независимых векторных поля: 
u j  – поле трансляционных перемещений и φk – поле микроповоротов. С по-
мощью этих полей легко конструируется асимметричный тензор деформации 
	 ij i j ijk

ku e= ,∇ − φ 	 (2.1)

где ∇i  – оператор ковариантного дифференцирования, eijk  – альтернирую-
щий тензор (тензор перестановок). Заметим, что определенный таким обра-
зом тензор деформации не имеет физической размерности и его одного не-
достаточно для представления деформации микрополярного тела. Поэтому 
приходится оперировать с еще одним асимметричным тензором второго ран-
га – тензором изгиба–кручения: 
	 κ φi

s
i

s
⋅

⋅ ∇= .	 (2.2)

В силу своего определения тензор изгиба–кручения обладает физиче-
ской размерностью кривизны (т.е. обратной длины) и может быть приведен 
к физически безразмерной форме умножением на характерную микродлину 
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микрополярного тела. Указанная микродлина может быть явно введена 
в уравнения гемитропной микрополярной упругости так, как это сделано 
в работе [5].

Следуя [5], определим асимметричные тензоры силовых и моментных на-
пряжений t ik  и µ⋅

⋅
k
i  и с их помощью запишем следующие уравнения баланса 

(количества движения и момента количества движения): 

	 ∇ − −

∇ + − −⋅
⋅

i
ik k k

i k
i

ksl
sl

k k

t f u

e t l

= ( ),

= ( ),[ ]

ρ

µ ρ φ



I
	 (2.3)

где ρ – плотность, f k – массовые силы, lk – массовые пары, I – коэффициент 
микроинерции. Здесь и ниже точкой обозначается частное дифференцирова-
ние по времени при фиксированных пространственных переменных: 

A A= .∂⋅

Рассмотрим далее уравнение баланса внутренней энергии:

ρ µ κ ρ


u t q his
is s

i
i
s

i
i= , + + − ∇⋅

⋅
⋅

⋅

где u – плотность внутренней энергии (в расчете на единицу массы), hk – век-
тор потока тепла (h n dAk

k  – количество тепла, поступающее в единицу време-
ни через элементарную площадку n dAk ), q – лучистое тепло (в расчете на еди-
ницу массы).

Наконец приведем уравнение баланса энтропии:
	 ρ ρσ ρξs Jk

k= ,−∇ + + 	 (2.4)

где s — энтропии (в расчете на единицу массы), J k – вектор потока энтро-
пии, ξ – внутреннее (неконтролируемое) производство энтропии (в расчете 
на единицу массы), σ – внешнее (контролируемое) производство энтропии (в 
расчете на единицу массы).

Термомеханический принцип необратимости гласит, что внутреннее про-
изводство энтропии не может быть отрицательным ни для какого термодина-
мически допустимого процесса, т.е. при отсутствии лучистого притока тепла 
не допускает стока энтропии: 
	 ξ ≥ 0.	 (2.5)

3. Свободная энергия и определяющие уравнения микрополярной упругой 
теплопроводящей среды второго типа (CGNII). Для термоупругих континуумов 
второго типа вместо термодинамической температуры θ приходится вводить 
другую термодинамическую переменную состояния – температурное смеще-
ние ϑ согласно 

ϑ θ= .

Свободная энергия Гельмгольца (в расчете на единицу массы) в этом слу-
чае выступает как термодинамический потенциал состояния следующего 
вида: 

ψ ψ ϑ ϑ κ= ( , , , ).∂ ∇⋅ ⋅
⋅

i is i
s
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Его отличительной особенностью является явная зависимость от компо-
нент 4-градиента температурного смещения 

∂ ∂ ∇⋅ϑ ϑ ϑ= , ,4 i

наряду с отсутствием явных вхождений самого температурного смещения.
Энтропия, следовательно, вычисляется как каноническая термодинами-

ческая производная 

s i is i
s

=
( , , , )

( )
−

∂ ∂ ∇
∂ ∂

⋅ ⋅
⋅

⋅

ψ ϑ ϑ κ
ϑ


по специфической составляющей 4-градиента температурного смещения.
Из уравнений баланса внутренней энергии и энтропии легко синтезирует-

ся так называемое приведенное уравнение энергии, пока в предварительной 
форме: 

− + + + − ∇ + ∇ − + −⋅
⋅

⋅
⋅ρ ψ θ µ κ θ θ ρ θσ ρθ( ) ( ) ( ) =





s t J J h qis
is s

i
i
s i

i i
i i ξξ.

Полученное уравнение несколько упрощается, если положить 

θJ hi i= , θσ = ,q

т.е. связать с точностью до термодинамической температуры векторы потока 
энтропии и потока тепла, а также внешнее производство энтропии с лучис
тым теплом, поступающим в среду. В результате приходим к окончательным 
формам приведенного уравнения энергии: 
	 − + + + − ∇⋅

⋅
⋅

⋅ −ρ ψ θ µ κ θ θ ρθξ( ) = ,1






s t his
is s

i
i
s i

i

или 
	 − + + + − ∇⋅

⋅
⋅

⋅ −ρ ψ θ µ κ θ θ ρθξ( ) = .1s t his
is s

i
i
s i

i




 	 (3.1)

С помощью приведенного уравнения энергии (3.1) неравенство необрати-
мости (2.5) приводится к 

C A B his
is s

i
i
s

k
k

i
i





θ κ ρ ψ
ϑ

θ θ θ ρθξ+ + + ∂
∂∇

∇ + ∇ − ≤⋅
⋅

⋅
⋅ − 1 = 0,

где введены следующие обозначения: 

C s=
( )

,ρ ψ
ϑ

ρ∂
∂ ∂

+
⋅

A tis

is

is= ,ρ ψ∂
∂

−


B s
i

i
s s

i
⋅
⋅

⋅
⋅ ⋅

⋅∂
∂

−= .ρ ψ
κ

µ

Неравенство (2.5) обязано выполняться для всех термодинамических про-
цессов, что позволяет считать независимыми и произвольными скорости лю-
бого термодинамического процесса: 

 



θ ϑ θ κ, = , , .∇ ∇ ⋅
⋅

i i is i
s
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Поэтому C , Ais, B s
i
⋅
⋅ равны нулю, что сразу приводит к определяющим со-

отношениям для континуума CGNII: 
	 s =

( )
,− ∂

∂ ∂⋅

ψ
ϑ

	 (3.2)

	 t is

is
= ,ρ ψ∂

∂
	 (3.3)

	 µ ρ ψ
κ⋅

⋅

⋅
⋅

∂
∂s

i

i
s

= .	 (3.4)

В результате внутреннее производство энтропии вычисляется в виде 

ρθξ ρ ψ
ϑ

θ θ θ ρ ψ
ϑ

θ θ= = ,1− ∂
∂∇

∇ − ∇ − ∂
∂∇

∇ − ∇−

k
k

i
i

k
k

i
ih J

или 

ρθξ ρ ψ
ϑ

θ= .− + ∂
∂∇







∇J k

k
k

Таким образом, внутреннее производство энтропии исчезает 

ξ = 0,

если вектор потока энтропии задать следующим определяющим уравнением: 

J k

k
= .− ∂

∂∇
ρ ψ

ϑ

4. Анизотропная/гемитропная теплопроводящие микрополярные среды CGNII. 
Линейная теплопроводящая анизотропная микрополярная среда характеризу-
ется свободной энергией, квадратичной по отношению к отклонениям термо-
динамических переменных состояния от их значений, наблюдаемых в поло-
жении равновесия. В частности, анизотропная микрополярная среда CGNII 
задается следующим термодинамическим потенциалом состояния: 

	

2 =
1 2 3

ρψ κ κ κH H Hislm
is lm s m

i l
i
s

l
m

m
isl

is l
m  + + +

+

⋅ ⋅
⋅ ⋅

⋅
⋅

⋅
⋅

⋅⋅⋅
⋅

⋅
⋅

GG G Fis
is s

i
i
s

is
i s
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1
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⋅

⋅
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	 (4.1)

Здесь в целях сокращения записи переменная θ на самом деле обозначает 
температурный инкремент θ θ θ→ − 0, где θ0 есть отсчетная температура.

Заметим, что определяющие тензоры заведомо удовлетворяют уравнениям 
симметрии: 

H H H Hislm lmis
s m

i l
m s
l i is si

1 1 2 2
= , = , = .⋅ ⋅

⋅ ⋅
⋅ ⋅
⋅ ⋅ Λ Λ

Опираясь на результаты, полученные в предыдущем разделе работы, нахо-
дим определяющие уравнения анизотропной микрополярной среды CGNII: 

t H H Gis islm
lm m

isl
l
m is=

1
2

1
2

,
1 3 1
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⋅

⋅
⋅κ θ
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Подстановка полученных определяющих уравнений в уравнения баланса 
(2.3) и замена тензора деформации и тензора изгиба–кручения в соответствии 
с формулами (2.1) и (2.2) дает дифференциальные уравнения движения и рас-
пространения тепла для анизотропной микрополярной среды CGNII, сфор-
мулированные в терминах вектора трансляционных перемещения и спин-
вектора. Поскольку указанные уравнения без труда выписываются, то они 
здесь не приводятся. Далее рассмотрим своеобразный и практически важный 
случай гемитропной микрополярной среды, когда три определяющих тензора 
четвертого ранга в энергетической форме (4.1) имеют компоненты, не чув-
ствительные к поворотам пространственного координатного триэдра, а три 
тензора второго ранга оказываются шаровыми2.

Обратим внимание на то обстоятельство, что в энергетической форме (4.1) 
третий из определяющих тензоров четвертого ранга на самом деле получен 
из псевдотензора четвертого ранга нечетного алгебраического веса в результа-
те стандартной процедуры перехода от псевдотензорных представлений к аб-
солютным тензорным. Последние как раз и используются в данной статье, 
несколько затемняя сущность математического описания микрополярности. 
Тем не менее определяющий тензор H m

isl

3
⋅⋅⋅

⋅  в модели гемитропного микропо-
лярного тела сначала появляется как псевдотензор четвертого ранга нечетного 
веса, компоненты которого чувствительны к зеркальным преобразованиям 
трехмерного пространства. Такое положение дел обусловлено возможностью 
описания поворотов в трехмерном пространстве в виде двух псевдовекторов 
алгебраического веса +1 или −1, а также одного абсолютного вектора нулевого 
веса: 

φl

[ 1]−
, φl  или φl, φl

[ 1]+
. 

Подробная дискуссия по векторным представлениям как конечных, так 
и инфинитезимальных поворотов в трехмерном пространстве имеется в ста-
тье [7].

Чувствительность компонент одного из определяющих тензоров к зер-
кальным преобразованиям трехмерного пространства с  математической 
точностью выражает смысл определения гемитропного микрополярного 
тела как такового, “механические свойства которого зависят от зеркальных 
симметрий”.

2 Обратим внимание на то, что высказанное только что положение может, если 
угодно, приниматься в качестве определения, выделяющего среди анизотропных 
сред именно гемитропные среды. В современной научной литературе гемитроп-
ные среды иногда называют полуизотропными, демитропными, изотропными 
нецентральносимметричными/ацентрическими.
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Следуя [6], находим следующие представления гемитропных определяю-
щих тензоров, пригодные для произвольной координатной системы: 

H a g g b g g c g gislm is lm il sm im sl

1 1 1 1
= ,+ +

H a g g b g g c g gislm is lm il sm im sl

2 2 2 2
= ,+ +

H a g g b g g c g gislm is lm il sm im sl

3 3 3 3
= ;+ +

G d g G d gis is

s

i
s
i is is

1 1 2 2
= , = , = .

⋅

⋅ δ Λ Λ

Видно, что определяющие тензоры гемитропной микрополярной сре-
ды CGNII выражаются только через метрический тензор, а коэффициенты 
представляют собой абсолютные скаляры, и даже более того – постоянные, 
не чувствительные ни к каким преобразованиям координатной системы, ко-
торые мы будем называть определяющими постоянными.

Введенные выше определяющие постоянные удобны с алгебраической точ-
ки зрения, но не совсем приемлемы в механике деформируемых сред. По этой 
причине вводятся новые постоянные согласно 
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a GL b GL
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2
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+ −
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*

2

2
*
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1 2
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= .

− +
−

−

−
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θ

Поясним, что в данных выше формулах используются стандартные моду-
ли термомеханики и “почти” конвенциональные определяющие постоянные, 
характерные для микрополярных упругих сред:

G  – модуль сдвига;
ν – коэффициент Пуассона;
L характеристическая длина микрополярной среды;
c1, c2, c3, c4, c5, c6 – физически безразмерные постоянные;

α
*

 – коэффициент линейного температурного расширения;

β
*
 – коэффициент температурного искажения;

Λ  – характерная скорость теплопроводности;
c – теплоемкость в расчете на единицу массы.
Таким образом, для гемитропной микрополярной среды CGNII можно по-

лучить определяющие уравнения вида: 
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Эти уравнения связывают тензоры силовых и моментных напряжений 

с тензором деформации, тензором изгиба–кручения и температурным ин-
крементом. Вектор потока тепла согласно определяющим уравнениям про-
порционален антиградиенту температурного смещения.

5. Уравнение распространения тепла в анизотропном/гемитропном микропо-
лярном упругом теле. Уравнение распространения тепла в CGNII континууме 
представляет наибольший интерес при моделировании волновых механизмов 
передачи тепла. Поскольку внутреннее производство энтропии в CGNII кон-
тинууме исчезает, то можно вести речь о волновом механизме теплопроводно-
сти в форме распространяющихся незатухающих связанных волн перемеще-
ний, микровращений и температуры.

Вывод уравнения распространения тепла начнем с уравнения баланса эн-
тропии (2.4), предварительно заменив в нем физическое поле s на функцию 
термодинамических переменных состояния s, вектор потока энтропии – его 
выражением через вектор потока тепла, а внешнее производство энтропии – 
через лучистое тепло. Учтем также отсутствие внутреннего производства эн-
тропии, положив ξ = 0. Выполняя частное дифференцирование по времени 
функциональной зависимости для s, приходим к следующему уравнению: 
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Последнее уравнение без труда линеаризуется, в результате чего получаем: 
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Линеаризованное уравнение баланса энтропии включает несколько тер-
модинамических производных, для которых разумно принять следующие со-
кращенные обозначения: 
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После этого линейное уравнение баланса энтропии приобретает форму: 
	 − ∇ ∇ − + + +⋅

⋅
⋅

⋅ −Λ js
j s

ij
ij j

i
i
j c qϑ ρθ κ θ θ ρ= ( ) .0 0

1g k



 	 (5.1)

Собственно, это уравнение и следует, как это принято в термомеханике 
континуума, трактовать как уравнение теплопроводоности для линейной ани-
зотропной термоупругой микрополярной среды CGNII. По существу же оно 
представляет собой линеаризованное уравнение баланса энтропии.

Заметим, что на основании (3.2) и (4.1) будут справедливы равенства: 
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Уравнение распространения тепла (1) упрощается в гемитропном случае. 
Поскольку для гемитропной среды 
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то вместо (5.1) имеем: 
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Нетрудно видеть, что “термическая” главная часть уравнения распростра-
нения тепла (5.2) сводится к 

∇ ∇ −i
i

cϑ ρ ϑ
Λ
,

что при условии Λ > 0 обеспечивает гиперболичность процессов теплопровод
ности, т.е. их волновую природу. Очевидно, что уравнение теплопроводности 
(5.2) не может исследоваться отдельно: оно, как хорошо видно, связывается 
с полями трансляционных и спинорных перемещений, поскольку включает 
пространственные градиенты их скоростей.

В изотропном случае уравнение теплопроводности CGNII примет наибо-
лее простую форму из всех рассмотренных ранее: 
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или в несколько более развернутом виде: 
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В него уже не будут входить микроповороты и характеристическая микро
длина L; “термическая” главная часть совпадает с таковой для гемитропной 
микрополярной среды.

6. Заключительные замечания. Изложенные в предыдущих разделах работы 
результаты дают возможность сформулировать замкнутую систему диффе-
ренциальных уравнений термоупругого континуума CGNII с волновым ме-
ханизмом передачи тепла. Ограничиваясь моделью гемитропной среды, полу-
чим следующую систему связанных дифференциальных уравнений в частных 
производных: 
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Уравнение распространения тепла в  гемитропном случае (в отличии 
от изотропного) включает дивергенцию скоростей микроповоротов 

� � ��,

правда, с коэффициентом, имеющим второй порядок малости по характери-
стической микродлине L. Следовательно, гемитропное термоупругое CGNII 
тело выступает как наиболее простое из всего спектра анизотропных тел, 
процесс передачи тепла в котором в явном виде зависит от поля скоростей 
микроповоротов. Неявноф скорости микроповоротов влияют на теплопро-
водность из-за связанности дифференциальных уравнений движения (двух 
первых векторных уравнения в данной выше системе) с пространственным 
градиентом скорости температурного смещения. То же самое справедливо 
и в случае гемитропного термоупругого тела CGNI (см., например, [3]), пе-
редача тепла в котором реализуется стандартным механизмом – законом те-
плопроводности Фурье.

Постановка прикладных задач подразумевает формулировку граничных 
условий. С этой целью приведем формулы для векторов силовых ts и момент-
ных ms  напряжений в гемитропном теле, действующих на двумерный элемент 
площади, ортогональный единичному вектору n j : 
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Эти уравнения допускают дальнейшие преобразования, если воспользо-
ваться формулами: 

n u n u e e n u

n n e e n

i
s i

i
i s sij

jkl i
k l

i
s i

i
i s sij

jkl i

∇ ∇ + ∇

∇ ∇ + ∇

= ( ) ,

= ( )φ φ kk lφ .

В итоге получим следующие представления для векторов t и m: 
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из которых непосредственно можно заключить, что вектор t  будет “не мал” 
даже при малых микродлинах L, а вектор m имеет, вообще говоря, первый 
порядок малости по отношению к микродлине (и, кроме того, дополнительно 
корректируется членами второго порядка малости по L).

Работа выполнена по теме госзадания (госрегистрация 124012500437-9).
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Abstract. In this paper, the mechanics of micropolar elastic solids is extendded to 
more general thermoelastic media in order to take account of the effect of temperature 
on their states and mechanical behavior. Since a thermoelastic micropolar medium 
conducts heat, it is required to include one or another mechanism of thermal 
conductivity in the basic equations of micropolar thermoelasticity. A model of 
thermoelastic micropolar medium CGNII is developed on ground of the wave 
principle of heat transfer (i.e., thermal conductivity of the second type known 
from previous discussions by Green and Naghdi), characterized by zero internal 
entropy production. All the basic equations of the theory presented in this study are 
derived from the conventional equations of balance of continuum mechanics and 
the fundamental thermodynamic inequality. Constitutive equations for a linear 
anisotropic thermoelastic micropolar medium (CGNII) are obtained by using a 
quadratic energy form for the Helmholtz free energy. Special attention is paid to 
hemitropic micropolar medium, when the components of one of the fourth rank 
constitutive pseudotensors demonstrate sensitivity to mirror reflections of three-
dimensional space. A closed system of coupled differential equations is given in terms 
of translational displacements, microrotations and temperature displacement. It is 
important since can be used in formulations of applied problems of thermomechanics 
regarding to the wave heat transfer mechanism in micropolar elastic media. 

Keywords: micropolar solid, heat conduction, anisotropy, hemitropy, free energy, 
constitutive tensor, entropy, entropy production, CGNII thermoelasticity
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