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1. Введение. В работах [1–17] исследуется спектр частот пластин и обо-
лочек, контактирующих с жидкостью и газом, обзор которых приводится 
в [18]. В последней работе определяется низшая частота изгибных коле-
баний пластины, контактирующей с жидкостью или газом, в предполо-
жении ее цилиндрического изгиба. Поверхности пластины контактируют 
со средой одинаковой плотности и давления. Среда может быть сжимае-
мой в процессе деформации поверхности и несжимаемой. Определяется 
влияние на изгиб взаимодействия среднего давления и изменения кривиз-
ны срединной поверхности, а также присоединенной массы газовой сре-
ды. Исследовано влияние давления окружающей среды на низшую частоту 
колебаний пластины с учетом взаимодействия среднего избыточного дав-
ления на ее поверхности и кривизны срединной поверхности, а также дей-
ствие присоединенной массы газовой среды с удаленными границами. 

На  основе использования дискретно структурной модели деформи-
рования многослойных пластин при малых перемещениях, деформациях 
и учете внутреннего трения материалов слоев по модели Кельвина–Фойгта 
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в работе [19] рассмотрены две задачи о прохождении моногармонической зву-
ковой волны сквозь тонкую композитную прямоугольную пластину, шарнир-
но закрепленную в проеме абсолютно жесткой перегородки. При постановке 
первой задачи предполагается, что пластина находится между двумя полубес-
конечными пространствами и на нее падает плоская звуковая волна с задан-
ным амплитудным значением давления звуковой волны. При постановке вто-
рой задачи считается, что пластина находится между двумя абсолютно жест-
кими преградами, одна из них за счет гармонических колебаний с заданной 
амплитудой перемещений формирует падающую на пластину звуковую волну, 
а другая неподвижна и имеет деформируемое энергопоглощающее покрытие. 

В работе [20] исследовались собственные колебания прямоугольных метал-
лических пластин. Для определения частот собственных колебаний применя-
лись расчетные методы, в частности аналитический расчет и расчет методом 
конечных элементов. За основу аналитического расчета было принято уравне-
ние движения тонкой прямоугольной пластины. Затем применялся асимпто-
тический метод, учитывающий динамический краевой эффект. В результате 
были определены частоты собственных колебаний пластины.

В  работах [21–24] изучены колебания прямоугольной пластины с  раз-
личными граничными условиями на  краях. Установлены энергетические 
неравенства, из  которых следует единственность решения поставленных 
начально-граничных задач. Решения построены в виде суммы рядов с обос
нованием сходимости в классах классических и обобщенных решений. Уста-
новлена устойчивость решений от начальных данных.

В данной работе определяется спектр частот и формы изгибных колебаний 
прямоугольной пластины, подвижно заделанной по контуру, которая поме-
щена в жидкость или газ. Изучен вопрос о взаимном влиянии эффекта сред-
него давления и известного из литературы эффекта присоединенной массы 
жидкости на деформацию пластины. Получены формулы для вычисления ча-
стот и формы изгибных колебаний прямоугольной пластины, находящейся 
в несжимаемой и сжимаемой жидкости. 

Для описания колебаний тонкой прямоугольной пластины рассмотрим 
дифференциальное уравнение четвертого порядка [25, с. 99]:
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где E, ν, ρ – модуль упругости, коэффициент Пуассона, плотность материала, 
h – толщина пластины, w(x,y,t) – прогиб, х, y, t – координаты, время, q – по-
перечная распределенная нагрузка.

На нижнюю и верхнюю поверхность пластины действуют давления р0 + р1 
и р0 + р2 жидкостей с плотностями ρ1 и ρ2 (рис. 1). Здесь р0 – давление сбор-
ки, в частности атмосферное давление, действующее на все поверхности, р1, 
р2 – избыточные давления. При определении нагрузки q будем предполагать, 
что ρ1, ρ2 и р1, р2 являются постоянными и, вообще говоря, они могут быть 
равными или неравными соответственно. 

2. Несжимаемая среда. Предполагаем, что области, занятые жидкостями, 
простираются неограниченно, опоры не препятствуют свободному перетека-
нию жидкости вдоль пластины в направлении осей x и y. Возникающие в ре-
зультате движения пластины давления на нижнюю и верхнюю поверхность 
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обозначим через p1  и  p2 . Уравнения динамики несжимаемой жидкости в пря-
моугольных координатах x, y, z относительно потенциала скорости φi(x, y, z, t) 
имеют вид [1–3]:
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Задаются условия на поверхностях контакта со средой:
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На большом удалении от поверхности возмущения среды от пластины 
исчезают:
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Элементарные длины dx1 и dx2 нижней и верхней поверхностей, выражен-
ные через длину dx срединной поверхности пластины, определяются по фор-
мулам (рис. 1a) 
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где деформации в соответствии с гипотезами Кирхгоффа [18] равны
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Аналогично определяются элементарные длины dy1 и dy2 нижней и верх-
ней поверхностей по оси y, выраженные через длину dy срединной поверхно-
сти пластины (рис. 1б) 
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и деформации в соответствии с гипотезами Кирхгоффа: 
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Распределенная сила q определяется аналогично работам [15, 16]:

Рис. 1. Элементы dx и dy срединной поверхности изогнутой пластины.
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откуда следует:
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Слагаемыми, содержащими квадрат h, можно пренебречь. В линейной 
задаче также пренебрегаем слагаемым, содержащим произведение среднего 
динамического давления на сумму вторых производных от прогиба по коор-
динатам х, y. Тогда получим:
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По условию прямоугольная пластина по осям x и y подвижно заделана 
на опоры, расположенные на равных расстояниях a и b. Это означает, что
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Разделяя переменные w x y t v x y f t, , ,( ) = ( ) ( ) в уравнении (1.1) при q = 0, 
относительно функции v x y,( ) , получим спектральную задачу:
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Собственные функции этой задачи определяются по формуле [23]
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которые соответствуют собственным значениям:
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Отметим, что система собственных функций (2.8) является полной и об-
разует ортонормированный базис в пространстве L2(G), где G – область пере-
менных (x, y): 0 < x < a, 0 < y < b.

Тогда изгибные колебания пластины будем искать по формуле: 

w x y t W t v W t v x ymn mn
m n
m n

N

, , ,
,

( ) = ( ) + ( ) ( )
=

+ ≠

∑00 00
0
0

.� (2.10)

Функции ϕi x y z t, , ,( )  будем искать исходя из условий (2.1), (2.3), (2.2) 
и (2.7) в виде:
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где Φimn mnz g t( ) ( ),  – пока неизвестные функции.
Подставим (2.10) в уравнение Лапласа:
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Отсюда получим дифференциальные уравнения относительно неизвест-
ных функций Φimn z( ) : 
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Дифференциальное уравнение (2.12) при m + n > 0 имеет общие решения: 
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где C i jijmn , , ,= 1 2 – произвольные постоянные. В силу условий (2.3) при 
m + n > 0 находим:
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Здесь постоянные A1mn и A2mn – неизвестные, для определения которых вос-
пользуемся условиями (2.2). Для этого воспользуемся формулой Тейлора для 
разложения функции ∂φ1/∂z в окрестности точки z = 0:
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Пренебрегая последним слагаемым с учетом малости h2 и первого условия 
из (2.2), имеем: 
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Подставляя в (2.14) функции (2.11), (2.10), получим:

λ λmn mn mn mn
m n
m n

N

mn mn mn mnA v x y g t
h

A v x y g t1
0
0

1
2

2
, ,

,

( ) ( ) − ( ) ( )
=

+ >

∑ == ( ) + ( ) ( )
=

+ >

∑dW t

dt
v

dW t

dt
v x ymn

mn
m n
m n

N
00

00
0
0

,
,

λ λmn mn mn mn
m n
m n

N

mn mn mn mnA v x y g t
h

A v x y g t1
0
0

1
2

2
, ,

,

( ) ( ) − ( ) ( )
=

+ >

∑ == ( ) + ( ) ( )
=

+ >

∑dW t

dt
v

dW t

dt
v x ymn

mn
m n
m n

N
00

00
0
0

,
,

или

A
h

v x y g t
dW t

dt
vmn mn

mn
mn mn

m n
m n

N

1
0
0

00
01

2
�

�
��

�
�

�

�
� � � � � � � �

�
� �

� ,
,

00
0
0

�
� � � �

�
� �

� dW t

dt
v x ymn

mn
m n
m n

N

,
,

	A
h

v x y g t
dW t

dt
vmn mn

mn
mn mn

m n
m n

N

1
0
0

00
01

2
�

�
��

�
�

�

�
� � � � � � � �

�
� �

� ,
,

00
0
0

�
� � � �

�
� �

� dW t

dt
v x ymn

mn
m n
m n

N

,
,

. 	 (2.15) 

При выполнении условий 

	
dW t
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dW t
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g t m nmn

mn mn
00 0 0

( ) = ( ) = ( ) + >, ,ω  	 (2.16) 

из равенства (2.15) найдем:
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Аналогично находим постоянные:
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Таким образом, у функций �i x y z t, , ,� � найдены постоянные A1mn и A2mn 
при m + n > 0, которые определяются по формулам (2.17) и (2.18), а A100 и A200 
остаются произвольными постоянными.

Также, используя формулы (2.13), (2.16), (2.17) и (2.18), определим динами-
ческие давления:
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Теперь на основании формулы (2.6) с учетом (2.19), (2.20) найдем: 
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Подставляя выражение (2.21) в уравнение (1.1), получим:
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Подставляя в (2.22) функции (2.7) при p1 – p2 = p, будем иметь:
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Отсюда в силу полноты системы функций (2.8) в L2(G) получим дифферен-
циальные уравнения:
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Из первого уравнения при условии � �1 100 2 200 0A A� � находим:
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C00

00
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00( ) =

−
+

ρ ρ
,

где C00  – произвольная постоянная. 	 Второе дифференциальное уравнение 
перепишем в виде:
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2
2 0

( ) + ( ) =ω ,� (2.23)

где частота ωmn колебаний определяется по формуле:
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Формулу (2.24) перепишем в следующей форме:
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Здесь ω0mn – частота пластины, не контактирующей с жидкостью. Параме-
тры αmn и μmn определяют влияние давления и плотности окружающей среды. 
Таким образом, давление повышает, плотность понижает собственную часто-
ту пластины. При αmn << 1, μmn << 1 их влияние исчезает. Через исходные дан-
ные параметры αmn, μmn принимают вид:
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При E = 2·105МПа, ν = 0.3, ρ = 7.8·103 кг/м3, ρ1 = ρ2 = 103 кг/м3, p0 = 0, 
p1 = 1 МПа, p2 = 2 МПа, a = 0.20 м, b = 0.20 м, h = 0.001м, m = 1, n = 1, 
α11 = 0.16, μ11 = 11.5, m = 2, n = 1, α21 = 0.06, μ21 = 7.3, α12 = α21, μ12 = μ21, m = 2, 
n = 2, α22 = 0.04, μ22 = 5.77. Следовательно, влияние давления незначительное, 
имеется значительное снижение собственной частоты за счет присоединен-
ной массы. По модели несжимаемой жидкости в случае воды имеется только 
снижение собственной частоты. Это известный результат [1–3], однако учет 
влияния давления вносит некоторое изменение частоты.

Общая оценка рассматриваемых эффектов состоит в том, что при αmn > μmn 
преобладает повышающее частоту влияние давления среды, а при αmn < μmn – 
понижающее влияние плотности или присоединенной массы. Через входные 
параметры эти неравенства имеют вид:
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Первый случай реализуется для весьма тонких пластин из материала с ма-
лым модулем упругости и при предельно высоком давлении в контактиру-
ющей среде. Второй случай всегда реализуется при невысоких давлениях 
в плотной среде.

Далее найдем формулу для определения колебаний пластины с учетом най-
денных частот ωmn. Построим общее решение дифференциального уравнения 
(2.23): 

W t C t C tmn mn mn mn mn� � � �1 2cos sin� � ,
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где C mn1  и  C mn2 – произвольные постоянные. Тогда функция (2.10) прини-
мает вид:
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Чтобы найти в формуле (2.26) постоянные C1mn, C2mn, нужно задать началь-
ные условия:
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Удовлетворим функцию (2.26) условиям (2.27):
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где коэффициенты tmn и ymn разложения функций � x y,� � и � x y,� � в ряд 
по системе функций (2.8) определяются по формулам: 
	 τ τ τ τ00 00 0= ( ) = ( ) ( ) + >∫∫ ∫∫x y v dxdy x y v x y dxdy m n
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Тогда из равенств (2.28) и (2.29) в силу полноты и ортонормированности 
системы (2.8) в пространстве L2(G) находим: 

W C Cmn mn mn mn mn00 00 00 1 20= = = =τ ψ τ ψ ω, ; , .

Замечание. Из разложений (2.28) и (2.29) видно, что функции � x y,� �  и 
� x y,� �  должны удовлетворять условиям (2.7) и обладать гладкостью функ-
ций (2.8).

Таким образом, нами установлены следующие утверждения.
Утверждение 1. Если параметры αmn и μmn, определяющие соответственно 

влияние давления и плотности окружающей среды, то при
а) αmn << 1, μmn << 1 или αmn = μmn их влияние исчезает;
б) αmn > μmn преобладает повышающее частоту ωmn колебаний влияние дав-

ления среды;
в) αmn < μmn преобладает понижающее частоту ωmn колебаний влияние 

плотности среды. 
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Утверждение 2. Если начальные функции � x y,� �  и � x y,� �  удовлетворяют 
условиям замечания и �00 0� , то колебания прямоугольной однородной пла-
стины в указанной среде при избыточных давлениях p1, p2 и плотностях ρ ρ1 2, , 
удовлетворяющих условию � �1 100 2 200 0A A� � , определяется по формуле
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Собственные колебания пластины находятся по формуле:
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( )τ ω
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а собственные частоты wmn по формуле (2.25) при условиях (2.7) и (2.27), где ко-
эффициенты tmn, ymn определяются соответственно по формулам (2.30), (2.31).

3. Сжимаемая среда. В случае сжимаемой среды вместо уравнений (2.1) 
имеем трехмерные волновые уравнения [1–3]
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где ci – скорость звука, κi  – коэффициент адиабаты. В отличие от случая 
несжимаемой жидкости здесь давление и плотность не являются независи-
мыми, а связаны изотермическим законом.

На основании функции (2.8) аналогично (2.11) функции �i x y z t, , ,� � будем 
искать в виде:
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Подставляя (3.3) в волновое уравнение (3.1), получим:
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В силу (2.15) и (2.22): 
d g t

dt
g tmn

mn mn

2

2
2� �

� � � �� , тогда из (3.4) имеем:
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где
κ λ

ω
mn mn

mn

ic
i2 2

2

2
1 2= − =, , .

При условии kmn > 0 дифференциальное уравнение (3.5) при m + n > 0 
имеет общее решение:

Φimn i mn mn i mn mnz C z C z( ) = ( ) + −( )1 2exp expκ κ ,

а при m = n = 0
Φ Φ100 1100 1200 200 2100 2200z C z C z C z C( ) = + ( ) = +, ,

где C i jijmn , , ,= 1 2 – произвольные постоянные. В  силу условий (2.3) при 
m + n > 0 найдем:

Φ Φ1 1 2 20 0mn mn mn mn mn mnz B z z z B z z( ) = ( ) → → −∞ ( ) = −( ) → → ∞exp , , expκ κ ,

Φ Φ1 1 2 20 0mn mn mn mn mn mnz B z z z B z z( ) = ( ) → → −∞ ( ) = −( ) → → ∞exp , , expκ κ , ,

а при m = n = 0
Φ Φ100 100 200 200z B z B( ) = ( ) =, ,

где постоянные B1mn и  B2mn найдем из  условий (2.2) аналогично 
вышеизложенному:
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Тем самым функции (3.3) построены, где B1mn и B2mn при m + n > 0 нахо-
дятся по формулам (3.6), а постоянные B100 и B200 остаются произвольными 
постоянными.

	 Далее аналогично пункту 2 найдем:
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и на основании формулы (2.6) вычислим q:
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Подставляя выражение (3.7) в уравнение (1.1), получим: 
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Теперь подставим функцию (2.10) в уравнение (3.8). Отсюда при условии 
p1 – p2 = p имеем:
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Отсюда получаем дифференциальные уравнения: 
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где
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Решение последнего уравнения при условии � �1 100 2 200 0B B� �  опреде-
ляется по формуле:
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Поскольку kmn зависит от wmn, то равенство (3.10) перепишем в виде:
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Из данного уравнения с заменами 
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получим алгебраическое уравнение относительно xmn:
	 1

1
0− + −

−
=x

x

x
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η
.	 (3.12)

При условиях
1 0− − + ≥η αmn mn mn mnx x>0, 1  

уравнение (3.12) принимает вид:
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Кубическое уравнение (3.13) на числовой прямой имеет хотя бы один ве-
щественный корень. Пусть xmn = x0mn = x0 такой корень. Тогда

x a x a x a x x x a x x a x a x3
1

2
2 3 0

2
1 0

2
2 1 0+ + − = −( ) + +( ) + + +( )



.

Обозначим через f x( )  левую часть уравнения (3.13), где xmn = x. Функция 
f x x a x a x a( ) = + + −3

1
2

2 3  – это многочлен, по крайней мере непрерывная 
на всей числовой прямой функция. В точке x = 0: f a0 03( ) = − < .  Выясним 
знак функции f x( )  в точке x = 1: 
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Если µ αmn mn≥  или ηmn ≥ 1 , то  f 1 0( ) >  и график функции f x( )  пере-
секает ось Ox между точками x = 0 и x = 1, т.е. существует точка x = x0 ∈ (0, 1), 
такая, что f x0 0( ) = .  

Рассмотрим параметр ηmn  и оценим его снизу:

	 η
ω

λ
λ

ρ λ
λ

ρ
λ

ρmn
mn

i mn

mn

i mn

mn

i ic

D

hc

D

hc

D

hc
= = = ≥ ≥0

2

2 2

4

2 2

2

2
11
2

2
1.� (3.14) 

Отсюда видно, что при выборе данных D, ρ, h, a, b, ci всегда можно до-
биться выполнения неравенства (3.14). Если  же ηmn < 1  и  по  условию 
1 0− >ηmn mnx , то тогда имеем:
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Тогда уравнение (3.12) с учетом (3.15) примет вид:
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или
	 x b x b x bmn mn mn

3
1

2
2 3 0+ − + = , 	 (3.16) 
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Обозначим левую часть уравнения (3.16) через
g x x b x b x b( ) = + − + =3

1
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2 3 0,

где x = xmn, аналогично функции f x( )  убеждаемся в существовании корня 
уравнения (3.16). Действительно, вычислим g b0 03( ) = >  и

 g b b b mn
mn

mn mn
mn mn1 1 4

8
01 2 3 2� � � � � � � � � � �� � ��

�
� �

� �
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Поскольку показано существование решений уравнений (3.13) и (3.16), 
то частоты колебаний в случае сжимаемой среды определяются по формуле
	 ω ωmn mn mnx= 0 . � (3.17)

Покажем, что частоты, определенные по формуле (3.12), меньше, чем со-
ответствующие частоты в несжимаемой среде.

Действительно, из уравнения (3.12) имеем:
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Отсюда следует:
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Правая часть полученной оценки представляет формулу (2.25), по которой 
определяются частоты колебаний в несжимаемой среде.

Обозначим fmn mn= ω π2 , тогда первая полная собственная частота коле-
баний равна f x11 11 11 011 112= =ω π ω ω, .

При m = 1, n = 1, E = 2∙105 МПа, ν = 0.3, ρ = 7800 кг/м3, h = 0.001 м, a = 
0.2 м, b = 0.2 м, κ1 2,  = 1.4, атмосферном давлении pa = 0.1 МПа, плотности 
воздуха при атмосферном давлении ρ1a = 1.2928 кг/м3, p1 = p2 = p = 2 МПа чис-
ленное решение уравнения (3.10) дает корень: x11 = 0.93948. Соответствующая 
частота равна f11 = 116.6 Гц. 

Для проверки выполнения условия κmn
2  > 0 учтем полученное выражение 

ω ω11 011 11= x , где ω011 определяется из первой формулы из (3.11). В рассмот
ренном примере x11 ≈ 0.94, т.е. имеет место преобладание влияния давления 
воздуха над его плотностью. Условие κmn

2  > 0 для случая стальной пластины 
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и воды выполняется всегда, а в случае газов − при больших значениях a/h 
(например, a/h > 15).

В  таблице приводятся частоты изгибных колебаний прямоугольной. 
Из таблицы следует, что частоты, вычисленные по формулам для несжимае-
мой и сжимаемой сред, отличаются незначительно, причем частоты по фор-
муле для несжимаемой среды больше, чем частоты по формуле для сжимае-
мой среды.

Таблица. 1 Частоты изгибных колебаний прямоугольной пластины для 
разных m, n по формулам (2.25) и (3.17) соответственно для несжимаемой 
и сжимаемой сред

m, n fmn, Hz, формула (2.25) fmn, Hz, формула (3.17)
0, 1; 1, 0 59.91 59.89

1, 1 117.55 117.50
2, 2 469.1 468.8
3, 3 1061.1 1059.8

На  рис.  2а  приводится зависимость первой частоты изгибных колеба-
ний пластинки от давления для разных газов. Из рис. 2а видно, что с ростом 
давления собственная частота колебаний убывает. А с увеличением плотно-
сти газа происходит уменьшение собственной частоты изгибных колебаний. 
На рис. 2б приводится зависимость первой частоты изгибных колебаний пла-
стинки от давления по формулам для несжимаемой и сжимаемой жидкостей 
для двуокиси углерода. Из рис. 2б видно, что частоты по модели несжимаемой 
жидкости выше частот по модели для сжимаемой жидкости, причем с ростом 
давления разность частот колебаний возрастает.

Рис. 2. Зависимость первой частоты изгибных колебаний пластинки f11 (Hz) от давления 
p2 (MPa) для давления p1 = 0.5 МПа: (а) для разных газов: � �1 2a a�  = 0.1785 (гелий), 
1.2928 (воздух), 1.9768 (двуокись углерода) кг/м3 (пунктирная, штриховая, сплошная ли-
нии соответственно); (b) по формулам для несжимаемой (2.25) и сжимаемой (3.17) жид-
костей для двуокиси углерода � �1 2a a�  = 1.9768 кг/м3 (сплошная, пунктирная линии 
соответственно).
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115
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На рис. 3,а приводится зависимость второй частоты изгибных колебаний 
пластинки от давления для разных газов для m = n = 2. Из рис. 3,а видно, что 
с ростом давления собственная частота колебаний убывает. А с увеличением 
плотности газа происходит уменьшение собственной частоты изгибных ко-
лебаний. На рис. 3,b приводится зависимость второй частоты изгибных коле-
баний пластинки от давления по формулам для несжимаемой и сжимаемой 
жидкостей для двуокиси углерода. Из рис. 3,b видно, что частоты по моде-
ли несжимаемой жидкости выше частот по модели для сжимаемой жидкости, 
причем с ростом давления разность частот колебаний возрастает.

Аналогично п. 2 находится общее решение дифференциального уравнения 
(3.9) и строится формула (2.32) для определения формы колебаний пластины 
с учетом найденных частот wmn по формуле (3.17).

Таким образом, в  случае сжимаемой среды имеют место следующие 
утверждения.

Утверждение 3. Частоты в случае сжимаемой среды меньше, чем соответ-
ствующие частоты в несжимаемой среде. 

Утверждение 4. С ростом давления собственная частота колебаний воз-
растает для гелия и убывает для воздуха и углекислого газа. А с увеличени-
ем плотности газа происходит уменьшение собственной частоты изгибных 
колебаний.

Утверждение 5. Если начальные функции � x y,� � и � x y,� �  удовлетворя-
ют условиям замечания из пункта 2 и  �00 0� , то колебания прямоугольной 
однородной пластины в сжимаемой среде при избыточных давлениях p1, p2 
и плотностях ρ ρ1 2, , удовлетворяющих условию � �1 100 2 200 0B B� � , определя-
ется по формуле (2.32), собственные колебания пластины находятся по фор-
муле (2.33), а  собственные частоты по  формуле (3.17) при условиях (2.7) 
и (2.27), где коэффициенты tmn и ymn определяются соответственно по фор-
мулам (2.30), (2.31).

Рис. 3. Зависимость второй частоты изгибных колебаний пластинки f22 (Hz) от давления 
p2 (MPa) для давления p1 = 0.5 МПа: (а) для разных газов: � �1 2a a�  = 0.1785 (гелий), 
1.2928 (воздух), 1.9768 (двуокись углерода) кг/м3 (пунктирная, штриховая, сплошная ли-
нии соответственно); (b) по формулам для несжимаемой (2.25) и сжимаемой (3.17) жид-
костей для двуокиси углерода � �1 2a a�  = 1.9768 кг/м3 (сплошная, пунктирная линии 
соответственно).
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4. Заключение. Хорошо известно из литературы (например, [1–3], что соб-
ственные частоты изгибных колебаний пластины при ее контакте с жидкостью 
значительно снижаются. Это объясняется влиянием присоединенной массы 
жидкости. Установлено [15, 16], что учет разности площадей противополож-
ных поверхностей пластины, образующейся при ее изгибе, может оказывать 
повышающее влияние на собственные частоты. Учет этого эффекта приводит 
к появлению распределенной поперечной силы, равной произведению кри-
визны срединной поверхности и среднего давления на поверхности пластины. 

Одновременное влияние указанных факторов на частоты колебаний в слу-
чае несжимаемой жидкости зависит от отношения среднего давления к мо-
дулю упругости материала, плотностей материала и жидкости и отношения 
длины пластины к ее толщине. Для реальных параметров характерно прева-
лирующее влияние плотности среды над давлением в ней. Однако давление 
может оказывать заметное влияние на результат.

Для сжимаемой жидкости влияние носит более сложный характер, так как 
присоединенная масса зависит от скорости звука и от самой частоты колебаний. 
Кроме того, давление и плотность газовой среды не являются независимыми.

Влияние контактирующей среды на частоты колебаний является значитель-
ным для весьма тонких пластин и пленок с низким модулем упругости. Учет 
его необходим особенно в случае элементов микро- и наноразмерных толщин. 

С ростом давления собственная частота колебаний возрастает. В случае 
легких газов (водород, гелий) влияние давления может превалировать над их 
плотностью. Эти результаты могут быть использованы при моделировании 
колебаний пластинок, контактирующих с жидкостью и газом, в том числе 
микро- и наноразмеров.

Работа проведена в порядке выполнения госзадания (FMRS-2023-0015). 
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DETERMINATION OF THE SPECTRUM OF FREQUENCIES AND 
VIBRATIONS OF A RECTANGULAR PLATE, MOBILY EMPLOYED 

AROUND THE EDGE, IN DIFFERENT ENVIRONMENTS

K. B. Sabitova, *, A. G. Khakimova, **
aMavlyutov Institute of Mechanics, Ufa, Russia
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Abstract. The spectrum of frequencies and shapes of bending vibrations of a 
rectangular plate in contact with a liquid or gas are determined. A derivation of 
the expression for the distributed transverse load on a plate movably embedded 
along the contour is given. The surfaces of the plate are in contact with media of 
different densities and pressures. The medium can be compressible during surface 
deformation and incompressible. The influence on the bending of the interaction of 
average pressure and changes in the curvature of the middle surface, as well as the 
added mass of the gaseous medium, is determined.

Keywords: thin plate, liquid, gas, density, pressure, attached mass, velocity 
potential, frequency spectrum, forms of self-oscillation
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