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Рассматривается задача о движении тяжелой бусинки, нанизанной на ше­
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циклического интеграла. Осуществляется сравнение полученных резуль­
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обруч вращается вокруг вертикального диаметра с  постоянной угловой 
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Введение. Задача о движении тяжелой бусинки на вращающемся круго­
вом проволочном обруче – классическая задача механики. В случае, когда 
ось вращения вертикальна и трения нет, эта задача вполне интегрируема. 
В настоящей работе, в продолжение исследований, начатых ранее (см. [1]), 
рассматривается задача о движении бусинки на свободно вращающемся 
около вертикального диаметра тяжелом шероховатом круговом прово­
лочном обруче. Изучается зависимость от параметров задачи областей, 
заполненных неизолированными положениями равновесия бусинки от­
носительно вращающейся вместе с обручем системы отсчета. Исследуют­
ся бифуркации этих областей. При анализе применяют общие подходы 
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к исследованию существования, устойчивости и ветвления равновесий, раз­
витые в работах [2–8].

1. Постановка задачи. Уравнения движения. Рассмотрим движение тяжелой 
бусинки P  массы m  пренебрежимо малых размеров, нанизанной на тонкий 
шероховатый массивный круговой проволочный обруч   с центром O  ради­
уса   и массы M . Предположим, что обруч может свободно вращаться вокруг 
своего вертикального диаметра. Пусть OXYZ  – абсолютная прямоугольная 
декартова система отсчета (АСО), ось OY  которой направлена вдоль восходя­
щей вертикали, а  Oxyz  – подвижная система отсчета (ПСО), ось Ox  которой 
направлена вдоль горизонтального радиуса обруча, ось Oy  совпадает с осью 
OY , а ось Oz  дополняет их до правой тройки.

В настоящей работе предполагается, что свободно вращающийся обруч 
шероховат и взаимодействие между ним и бусинкой подчиняется закону су­
хого трения. Основная задача состоит в том, чтобы сопоставить свойства ди­
намики в данной постановке задачи со свойствами динамики в случае, когда 
обруч вращается с постоянной угловой скоростью [1].

Положение точки P  определяется вектором OP , имеющим координаты
OP = ( )X Y Z

T
, ,

в АСО и координаты
OP = ( )x y z

T
, ,

в ПСО.
Обозначим за  ψ  угол поворота ПСО относительно АСО около оси OY . 

Тогда для произвольной точки P  координаты относительно АСО и ПСО свя­
заны соотношениями:

X x z Y y Z x z� � � � � �cos sin sin cos� � � �, , .

Если ψ  – величина угловой скорости поворота ПСО около оси OY , то


  X x x z z� � � �cos sin sin cos� � � � � �



Y y=


  Z x x z z� � � � �sin cos cos sin� � � � � �

Рис. 1. Бусинка на обруче.
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и выражения для кинетической и потенциальной энергии системы запишутся 
как
T � � � �� � � � � � � �� �I m

X Y Z
I m

x z y z x
2 2 2 2

2 2 2 2 2 2 2 2
   

  

  � � � �( ) ( ) , UU � mgy

T � � � �� � � � � � � �� �I m
X Y Z

I m
x z y z x

2 2 2 2
2 2 2 2 2 2 2 2
   

  

  � � � �( ) ( ) , UU � mgy .

Здесь и далее I  – момент инерции обруча относительно оси вращения. 

В частном случае однородного обруча I
M= 

2

2
, где M – масса обруча. 

1.1. Уравнения движения с множителями Лагранжа. Во время движения 
точка вынуждена оставаться на обруче . Это обстоятельство может быть 
интерпретировано как наличие двух голономных удерживающих связей, 
стесняющих движение системы. В подвижных осях эти связи определяются 
соотношениями:
	 f x y f zn b= + −( ) = = =1

2
0 02 2 2

 , .	 (1.1)

Выпишем уравнения движения, принимая во внимания связи (1.1). Пусть
	 L L T U� � � � � � �   � � � � �, , , , , , ; ,x y z x y z f fn b n n b b .	 (1.2)

Здесь и далее λn , λb  – множители Лагранжа, подлежащие вычислению 
и определяющие нормальную и бинорамальную компоненты реакции связи

N Nn n n b b bf f� �� �grad и grad ,

направленные вдоль радиуса обруча и перпендикулярно плоскости обру­
ча   соответственно. Касательная компонента реакции связей – это сила 
трения T.

Тогда уравнения движения примут вид:

	 d
dt q q

T q x y zq n b
�
�

�
�
�

� � � � 


, , , , , ,� � � .	 (1.3)

Здесь величины T T T
n b� � �� � � 0 , а величины Tx , Ty , Tz  – это компо­

ненты силы трения T, о структуре которой будет сказано ниже. Выпишем 
выражения для производных при q x y z∈ { }, , :

	

�
�

� �� � �
�

� � �� � �

�
�

�
�
�

� � �

 

 



 





  

x
m x z

x
m z x x

y
my

y
mg

n� � � �

�

, ,

, nn

b

y

z
m z x

z
m z x

,

, .
�
�

� �� � �
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	 (1.4)

Кроме того,
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�
�

� � �� � � �� �� � � � �� � � �
�

�
 


      

�
� � � �

��I m z x z x z x J m zx xz p , 0 � (1.5)

Последнее из равенств в (1.5) справедливо в силу того, что функция Ла­
гранжа (1.2) не зависит явно от угла ψ . Это означает, что координата ψ  – 
циклическая и  �

�
�


� �p  – первый интеграл уравнений движения. Здесь и да­

лее J I m z x= + +( )2 2  – момент инерции системы бусинка–обруч относи­
тельно оси вращения.

2. Реакции связей и их вычисление. Для того чтобы выписать уравнения 
движения, требуется знать выражение для силы трения. Прежде всего за­

метим, что �� � ��
�
�

�
�
�

y x T

 

, ,0 – единичный вектор, касающийся окружности 

в точке P. Тогда проекция относительной скорости v = ( , , )  x y z T  точки P 
на касательную в этой точке составляет

v
xy yx

� � � � � � �
v,��

� �
�

.

В случае покоя бусинки относительно ПСО T � T��, где в силу закона 
Кулона–Амонтона
	 T N� � .	 (2.1)

Здесь и далее µ  – коэффициент трения, N  – вектор нормальной реакции, 
вычисляемый с помощью множителей Лагранжа (см. раздел 2.1).

В случае скольжения бусинки вдоль обруча
T � � � �sign v T�� ��,

где в силу закона Кулона–Амонтона
T � � N .

2.1. Определение множителей Лагранжа. Для определения значений λλn  и 
λλb  как обычно воспользуемся уравнениями связей (1.1), а также тождествами, 
получающимися в результате их однократного и двухкратного дифференци­
рования по времени. Эти тождества имеют вид:
	 

 



f xx yy f zn b= + ≡ = =0 0, ,	 (2.2)

	 

   



f x y f zx y x yn b= + + + ≡ = ≡2 2 0 0, .	 (2.3)

Замечание 1. Продифференцируем по времени первое соотношение из (1.5), 
чтобы получить выражение углового ускорения обруча   через остальные 
координаты и их первые и вторые производные по времени:

	 d
dt

m zx xz m xx zz

J
�
�

� � � �
�� � � �� �





    

�
�

�
0

2
.	 (2.4)

Из соотношения (2.4) в силу (2.3) имеем:




� �� �
�

2
2 2

mp
xx

I mx( )
.
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При движении бусинки по обручу   угловое ускорение обруча зависит 
от положения бусинки и ее скорости. Если бусинка относительно обруча   
покоится, то угловое ускорение обруча   равно нулю.

Из соотношения (1.4)
d
dt z z

z
mp

J
x x

p

J
x

p

J
z

m
b∂

∂
= ∂

∂
⇒ + − − = 



 

2 2
2

2
2

2
ψ ψ ψ λ .

Принимая во внимание соотношения (1.1), (2.2) и (2.3), имеем:

� �
b

mIp

I mx
x� �

�

2
2 2( )

 .

Легко видеть, что λb  обращается в нуль в случае, когда бусинка покоится 
относительно обруча или обручу не придано начальное вращение.

Для определения λn  сложим уравнения из (1.3) при q x=  и при q y= . 
Принимая во внимание первое соотношение из (1.1) и вид вектора T, после 
преобразований имеем:

	 λ ψ
n

m
gy x y

p x

I mx
= − +( ) −

+









�

� �
2

2 2
2 2

2 2( )
.	 (2.5)

Для дальнейшего описания движения воспользуемся углом ϕ, отсчитывае­
мым от нисходящей вертикали. Имеем

x y= = − sin , cosϕ ϕ

� � � �� �x y= =ϕ ϕ ϕ ϕcos , sin

�� � ��� �� � ���� �x y= − + = +ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ2 2sin cos , cos sin .

Подстановка этих выражений в (1.3) при q x=  и в  λn  из (2.5) позволяет 
выписать уравнение движения в виде:

	 ��
� �

ϕ ϕ ω ϕ
τ

ϕ ϕ

 ϕ
ω+ ( ) = ( ) ( ) = − ⋅

+( )
=P

T

m
P c

g2 2

2 2
21sin

,
,

cos

sin
, ,	 (2.6)

где введены следующие безразмерные параметры:
 = =M

m
c

p

m2 2
,

ψ

ω 

.

Параметр   характеризует отношение массы обруча к массе бусинки. Па­
раметр c  характеризует угловую скорость вращения обруча.

Координата ψ  – циклическая, и обобщенный импульс pψ , а вместе с ним 
и параметр c  неизменны во все время движения. Более того, ПСО вращается, 
вообще говоря, неравномерно: угловая скорость ее вращения зависит от от­
носительного движения бусинки и составляет

ψ ω
ϕ

= ⋅
+

c

 sin2
.

Замечание 2. Закон сохранения (1.5) имеет место вне зависимости от того, 
действует ли на бусинку трение со стороны обруча или нет.
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Замечание 3. В рассмотренном в работе [1] случае постоянства угловой ско­
рости вращения обруча уравнение движения бусинки имеет вид, отличаю­
щийся от уравнения (2.6).

2.2. Нормальная реакция. Для определения силы трения понадобится вы­
ражение для величины нормальной реакции. В общем случае это выражение 
определяется по формуле:
	 N b n� � �� �2 2 2

 	 (2.7)

�
�

� �
�

� �m c c� � ��
�

�
� �

�

�
� �2 2

2 2

2 4
2 2 2

2

2 2
24

 

cos

sin

sin

sin( ) ( )
cos ��2

2
�

�
��

�

�
��

Таким образом, соотношение T � � � �sign � �N , где N  определяется 
из (2.7) и задает силу сухого трения в уравнении (2.6)1.

На относительных равновесиях относительное движение отсутствует, т.е. 
� � 0. Тогда величина нормальной реакции принимает вид:

	 N m c= +
+

ω ϕ ϕ
 ϕ

2 2
2

2 2
 cos

sin

( sin )
.	 (2.8)

3. Стационарные движения. Для начала определим стационарные (устано­
вившиеся) движения системы – движения, на которых позиционная коорди­
ната ϕ º const  и скорость циклической координаты � � const, а сама коор­
дината ψψ  линейно зависит от времени [9, 10].

3.1. Случай гладкого обруча. В отсутствие трения, согласно (2.6), относитель­
ные равновесия определяются из уравнения

sin ϕ ϕ⋅ ( ) =P 0,

эквивалентного совокупности
sin� � 0  
P �� � � 0.

Если sin� � 0, то имеются стационарные движения
	 I I0 0 0: , :� � �� �� � ,	 (3.1)

называемые “прямыми” и отвечающие положениям бусинки в самой нижней 
и в самой верхней точках вертикального диаметра. Если P �� � � 0, то имеют 
место “косые” равновесия:
	 I c� � ��: �� � �sin cos2 2 2� � .	 (3.2)

Решения (3.1) существуют при всех значениях параметров задачи. Реше­
ния (3.2) существуют при c ≥  : при c =   решение единственно – � � 0, 
при c >   имеют место два симметричных относительно начала координат 
решения, принадлежащих интервалу �� �� �/ /2 2; .

1 В работе [1] при описании скольжения аналог λb во внимание не принимался.
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Для исследования устойчивости найденных стационарных движений вы­
пишем функцию Рауса, которая имеет вид (см., например, [9–12]):

	 R T U U U
�

= − −  = −





=
+( ) −( )p m
c

a aψψ ϕ ω
ϕ

� ��| ,
sin

c.1 5
2 2 2

2

2

1
2 2

oos ϕ.

Функция a  – приведенная (эффективная) потенциальная энергия. Ее 
вторая производная по  ϕ  имеет вид:

	
d

d

ca
2

2

2

2 3
2 22 2

U

�
�

ϕ ϕ
ϕ ϕ ϕ ϕ=

+( )
⋅ − +( )( ) +

sin
sin cos cossin .	 (3.3)

На решении I0  выражение (3.3) имеет вид:

d

d

ca
2

2
0

2

2
1

U

�ϕ ϕ=

= − ,

и оно положительно при  > c, значит, cтационарное движение I0  устойчи­
во по Ляпунову при этих значениях параметров и неустойчиво в противном 
случае.

На решении Iπ  выражение (3.3) имеет вид:

d

d

ca
2

2

2

2
1

U

�ϕ ϕ π=

= − − ,

и оно отрицательно при всех значениях параметров задачи, следовательно, ре­
шение Iπ  всегда неустойчиво.

Наконец, на решении I  выражение (3.3) имеет вид:

d

d

ca
2

2

2

2 3
2 2 22

U

�
�

� �

� � �ϕ ϕ
ϕ ϕ ϕ

ϕ ϕ=

=
+( )

⋅ + +( )( )
sin

sin sin sin .

Для всех значений параметров задачи и � � 0  выражение положительно, 
следовательно, решение I  за исключением точки � � 0  всегда устойчиво. 
В точке � � 0  вторая производная приведенной потенциальной энергии об­
ращается в нуль, и для определения свойств устойчивости требуется допол­
нительное исследование.

Следуя [13, 14], вычислим старшие производные приведенной потенциаль­
ной энергии в точке � � 0, c =  :

d

d

d

d
a

c

a

c

3

3
0

4

4
0

0 3 1
4U U
�

� �� �� �� � � �

� � ��
�
�

�
�
�

, ,

, .

Четвертая производная положительна при всех значениях параметров за­
дачи, откуда следует устойчивость бифуркационной точки.

Все три класса стационарных движений изображены на бифуркационных 
диаграммах (рис. 2). На рис. 2 слева изображена зависимость параметра c2  
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от  ϕ, справа – зависимость параметра   от  ϕ. На этих диаграммах видна 
реализация правила чередования устойчивости при одних и тех же значени­
ях параметра c  или   [9–12]. Ветвление решений происходит при � � 0  и 
 = c. Кроме того, кривая, задаваемая условием �n � 0, отделяет относитель­
ные равновесия, на которых �n � 0  от относительных равновесий, на кото­
рых �n � 0.

Замечание 4. Задача о бифуркации положений относительного равнове­
сия тяжелой бусинки на гладком круглом обруче, равномерно вращающемся 
вокруг своего вертикального диаметра, является учебной задачей по теоре­
тической механике и теории устойчивости движения (см., например, [9, 10, 
15]). Однако случай, когда обруч массивен и ему позволено свободно, без тре­
ния вращаться вокруг своего вертикального диаметра, обычно в литературе 
не обсуждается.

3.2. Случай шероховатого обруча. Стационарные движения при наличии 
трения определяются из  неравенства (2.1), выражающего закон Кулона–
Амонтона, в которое вместо T  подставляется его выражение из уравнения 
(2.6). Принимая во внимание, что на стационарных движениях �� � 0, а так­
же выражение для нормальной реакции (2.8), неравенство (2.1) представим 
в виде:
	 sin

( )
ϕ ϕ µ ϕ ϕ

ϕ
⋅ ( ) ≤ +

+
P

c
cos

sin

sin

2 2

2 2
.	 (3.4)

3.2.1. Зависимость решений от параметров   и  c. Выражение в левой ча­
сти неравенства обращается в нуль на решениях I0, Iπ, I , из предыдущего 
пункта, при этом выражение в правой части неравенства обращается в нуль 
при ��n � 0. Выделим на плоскости ��,c2� �  четыре области 1, 2, 3, 4  
так, как это показано на рис. 3.

Решения неравенства (3.4) в областях i i, , , ,= 1 2 3 4  изображены на рис. 4.
Таким образом, при конкретных значениях параметров  , µ  неравенство 

(3.4) задает область на цилиндре R S1 2 1c( ) × ( )ϕ , каждой точке которой отве­
чает стационарное движение системы. Для каждого значения c  как из фор­
мулы (3.4), так и по рис. 5 (слева) можно установить области, заполненные 

Рис. 2. Бифуркационные диаграммы в отсутствие трения для разных сочетаний параме­
тров: на плоскости ϕ;c 2( )  слева; на плоскости ϕ;( )  справа.

c2

c

κ2

κ

0‒π ‒π/2 π/2 π φ 0‒π ‒π/2 π/2 π φ
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стационарными движениями 
(ОЗСД).

При c = 0 , т.е. в  случае, когда 
обручу не придано изначальное вра­
щение, ОЗСД состоит из двух ком­
понент – двух отрезков одинаковой 
ширины 2ϕ, где

ϕ ϕ µ : tg * = .

Один из  этих отрезков, S0 , со­
держит нижнюю точку обруча, 
другой, Sπ, – его верхнюю точку. 
С возрастанием c2  нижний отрезок 
начинает расширяться, а верхний – 
неограниченно сужаться, по шири­
не стремясь к нулю. При некотором 
критическом значении ccrit

2  нижний 

Рис. 4. Подобласти областей i i, , , ,= 1 2 3 4 , отвечающие решениям неравенства (3.4).

c2

κ2

0‒π ‒π/2 π/2 π φ

c2

κ2

0‒π ‒π/2 π/2 π φ
c2

κ2

0‒π ‒π/2 π/2 π φ

c2

κ2

0‒π ‒π/2 π/2 π φ

Рис. 3. Области i i, , , ,= 1 2 3 4  знако­
постоянства подмодульных выражений 
неравенства (3.4).
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отрезок S0  распадается на три компоненты. Одна из них, I00, симметричная 
относительно горизонтальной оси, начинает неограниченно сужаться, по ши­
рине стремясь к нулю. Две другие компоненты I0±, симметричные друг по от­
ношению к другу относительно оси абсцисс, при неограниченном росте  c2 

по ширине стремятся к конечному значению � �� 2  , где � � �
�1. Левая 

и правая границы ветви I0+  стремятся асимптотически к значениям углов 
� ��   и � � �� �   соответственно. Аналогичные рассуждения позволяют 
построить диаграмму на плоскости �;� �, см. рис. 5 (справа).

В той части цилиндра R S1 2 1c� � � � �� , где выполнено неравенство

sin cos cos sin ,ϕ
ϕ

ϕ ϕ
ϕ

ϕ ϕ
ϕ

− ( )






⋅ + ( )






> ( ) =

+c
F

c
F

F
2 2 2

0
 sin(( )2

sin ϕ
,� (3.5)

граница ОЗСД определяется уравнением
	 F G cϕ ϕ( ) ⋅ ( ) =+

2,	 (3.6)
а  в  той части цилиндра, где неравенство (3.5) выполнено с  обратным 
знаком, – уравнением
	 F G c� �� � � � � ��

2,	 (3.7)

где G � � � � � �� � �tg  , α : tg� ��  – так называемый угол трения. Чтобы 
определить точки ветвления ОЗСД, найдем производные функций (3.6) и (3.7) 
по  ϕ  и приравняем их к нулю. Так как

	
dF
d

dG
d�

�

�
� �

� � �
� � �� � � �� � �

� �
�cos

sin
sin sin ,

cos2
2 2

2
3

1
 



,

то  c F G critcrit crit
2 � � � � � ��� � . Здесь критические углы ϕcrit  определяются 

из уравнений
dF
d

G F
dG
dϕ ϕ±

±+ = 0,

Рис. 5. Бифуркационная диаграмма при наличии трения для разных сочетаний параме­
тров. Здесь tg� �* = , tg� � =

−1 .
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которые после преобразований принимают следующий вид:

sin
sin

sin
2 3 2 2 2

2 2 2
ϕ

ϕ α ϕ
ϕ α ϕcrit

tg

tg
( ) ⋅

( ) + ( )
( ) −

crit crit

crit c



 rrit( ) =  .

3.2.2. Зависимость решений от параметра µµ. Исследуем решения неравен­
ства (3.4) в зависимости от параметра µµ. Рассмотрим функцию

f
P

c
ϕ

ϕ ϕ ϕ
ϕ ϕ ϕ

( ) =
+ ( )

+ +
sin ( sin )

cos ( sin ) sin





2 2

2 2 2 2
.

Эта функция является четной, периодической с периодом 2π  по перемен­
ной φ и имеет разрывы при тех значениях φ, где обращается в нуль нормаль­
ная реакция λn. Нулям функции f �� �  отвечают корни уравнений sinφ = 0 или 
P (φ) = 0. Топология решений неравенства (3.4) существенно зависит от пара­
метров   и  c. Рассмотрим различные сочетания этих параметров.

При  > c  функция P (φ) положительна, и  f �� �  обращается в нуль при 
� �� 0, ± . Решению неравенства f � �� � �  отвечают два отрезка, содержа­
щих нижнее I0  и верхнее Iπ  положения относительного равновесия бусинки. 
При увеличении µ  длина этих отрезков увеличивается, но отрезки не слива­
ются друг с другом из-за наличия разрывов функции f �� �. При φ = 0 функ­
ция f �� �  справа и слева от этой точки имеет разные производные, а имен­

но: f
c

' 0
2 2

2±( ) = ± −


 и для  > c  имеют место неравенства f ' 0 0+( ) >  и 

f ' 0 0−( ) < . Области, отвечающие решениям, изображены на рис. 6 слева.
Для случая  = c  касательная в точке φ = 0 к графику функции f �� �  ста­

новится горизонтальной f ' 0 0( ) = , см. рис. 6 по центру.
При  < c  функция P (φ) имеет два противоположных корня, что в соче­

тании с решениями � �� 0, ±  позволяет говорить о четырех семействах ре­
шений неравенства f � �� � � . Как и ранее, выделим решения, содержащие 
нижнее I0  и верхнее Iπ  положения относительного равновесия бусинки. По­
мимо этого, появляются семейства решений, содержащие косые равновесия 
I, определяемые соотношением (3.2). При увеличении µ  отрезки, отвечаю­
щие решениям, увеличиваются. Существует � �� crit, начиная с которого 
множества решений, содержащие I0  и  I, сливаются воедино. При этом при 

Рис. 6. Зависимость f ϕ( )  от коэффициента трения µ :  > c  слева,  = c  по центру, 
 < c  справа.

µ µ µ

µcrit

0‒π π φ 0‒π π φ 0‒π π φ
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сколь угодно больших µ  это решение не сольется с решением, содержащим 
Iπ, см. рис. 6 справа.

Выполненный анализ позволяет утверждать, что не существует значения 
коэффициента трения, при котором любой точке обруча соответствует отно­
сительное равновесие бусинки. Если φn: � �n n� � � 0 , то всегда существуют 
окрестности φn, где бусинка не может находиться в равновесии относительно 
обруча.

4. Скольжение. В  условиях скольжения сила трения определяется 
равенством

T N
v
v

� �� ,

и для различных значений постоянной циклического интеграла pψ  движение 
бусинки относительно обруча описывается уравнением

��
�

� � � �� � � �2P
T
m

sin ,
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Построим характерные фазовые портреты на  плоскости � �, � �  для до- 
и постбифуркационных значений параметров системы, рис. 7 и 8. На рис. 9 
и 10 представлены в увеличенном масштабе окрестности множеств неизоли­
рованных решений.

Анализ бифуркационных диаграмм показывает, что при всех началь­
ных условиях бусинка приходит в положение относительного равновесия 
за конечное время. Наличие интеграла площадей гарантирует, что при этом 

Рис. 7. Фазовый портрет для добифуркационных сочетаний параметров.
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Рис. 8. Фазовый портрет для постбифуркационных сочетаний параметров.

‒π π‒0.5π 0.5π0

0

φ

φ·

Рис. 9. Окрестность множеств I0  при постбифуркационных сочетаниях параметров.
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Рис. 10. Окрестность множеств I  при постбифуркационных сочетаниях параметров.
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дальнейшего рассеяния энергии происходить не будет и обруч продолжит вра­
щаться с постоянной угловой скоростью.

5. Заключительные замечания. В рассмотренной задаче о движении бусин­
ки по шероховатому круглому массивному обручу, свободно вращающемуся 
вокруг своего вертикального диаметра, найдено множество неизолированных 
установившихся движений и исследована зависимость этого множества от су­
щественных параметров задачи. Установлено, что топологически построенная 
бифуркационная диаграмма не отличается от подобной диаграммы, постро­
енной ранее [1] в случае, когда обруч вращается вокруг вертикального диаме­
тра с постоянной угловой скоростью. При различных значениях параметров 
задачи построены фазовые портреты. Численно показано, что на всех изучав­
шихся траекториях за конечное время бусинка приходит в положение относи­
тельного равновесия. При этом дальнейшего рассеяния энергии не происхо­
дит, а система продолжает вращение с постоянной угловой скоростью.

Заметим, что если ось вращения обруча наклонена относительно верти­
кали, то уже в случае скольжения бусинки без трения уравнения движения 
становятся неинтегрируемыми, а движение бусинки оказывается гораздо бо­
лее богатым на динамические эффекты [16]. Исследование динамики такой 
системы при наличии трения требует отдельного исследования.

Исследование Е.А. Никоновой (пункты 3 и 4) выполнено за счет гранта Рос­
сийского научного фонда № 24-11-20009, https://rscf.ru/project/24-11-20009/
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Abstract. We consider the problem of the motion of a heavy bead strung on a 
rough heavy hoop freely rotating around a vertical diameter. Non-isolated sets of 
steady state motions of the system are identified, and their bifurcation diagrams are 
constructed. The dependence of these solutions on an essential parameter of the 
problem—the constant of the cyclic integral—is studied. The results obtained are 
compared with the results obtained previously for the case when a rough hoop rotates 
around a vertical diameter with a constant angular velocity. Characteristic phase 
portraits are constructed for various combinations of system parameters.

Keywords: bilateral constraints, friction, steady state motions, non-isolated 
relative equilibria, bifurcation diagram, phase portrait
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