A Nonlinear Schrеdinger Equation for Gravity-Capillary Waves on Deep Water with Constant Vorticit

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The surface gravity-capillary waves on deep water with constant vorticity in the region
bounded by the free surface and the infinitely deep plane bottom are considered. A nonlinear Schrödinger equation is derived from a system of exact nonlinear integro-differential equations in conformal variables written in the implicit form taking into account surface tension. In deriving the nonlinear Schrödinger equation, the role of the mean flow is taken into account. The nonlinear Schrödinger equation is investigated for modulation instability. A soliton solution of the nonlinear Schrödinger equation that represents a soliton of the “ninth wave” type is obtained. bounded by the free surface and the infinitely deep plane bottom are considered. A nonlinear Schrödinger equation is derived from a system of exact nonlinear integro-differential equations in conformal
variables written in the implicit form taking into account surface tension. In deriving the nonlinear Schrödinger equation, the role of the mean flow is taken into account. The nonlinear Schrödinger equation is investigated for modulation instability. A soliton solution of the nonlinear Schrödinger equation that represents a soliton of the “ninth wave” type is obtained.

作者简介

M. Shishina

Nizhny Novgorod Planetarium named after G.M. Grechko

编辑信件的主要联系方式.
Email: java-jsp@yandex.ru
Nizhny Novgorod, Russia

参考

  1. Захаров В.Е. Устойчивость периодических волн конечной амплитуды на поверхности глубокой жидкости // Журн. ПМТФ. 1968. № 2. С. 86–94.
  2. Davey A. The propagation of a weakly nonlinear wave // J. Fluid Mech. 1972. V. 53. P. 769–781.
  3. Hasimoto H., Ono H. Nonlinear modulation of gravity waves // J. Phys. Soc. Japan. 1972. V. 33. P. 805–811.
  4. Yuen H.C., Lake B.M. Nonlinear deep water waves: Theory and experiment // Phys. Fluids. 1975. V. 18. P. 956–960.
  5. Johnson R.S. On the modulation of water waves on shear flows // Proc. R. Soc. Lond. A. 1976. V. 347. P. 537–546.
  6. Li J.C., Hui W.H. and Donelan M.A. Effects of velocity shear on the stability of surface deep water wave trains // Nonlinear Water Waves K. Horikawa and H. Maruo. Eds. Springer. 1987. P. 213-220.
  7. Oikawa M., Chow K., Benney D.J. The propagation of nonlinear wave packets in a shear flow with a free surface // Stud. Appl. Math. 1987. V. 76. P. 69–92.
  8. Baumstein A. I. Modulation of gravity waves with shear in water // Stud. Appl. Math. 1998. V. 100. P. 365–390.
  9. Thomas R., Kharif C., Manna M. A nonlinear Schrödinger equation for water waves on finite depth with constant vorticity // Phys. Fluids. 2012. V. 24. 127102.
  10. Simmen J.A., Saffman P.G. Steady deep-water waves on a linear shear current // Stud. Appl. Maths. 1985. V. 73. P. 35–57.
  11. Hsu H.C., Kharif C., Abid M., Chen Y.Y. A nonlinear Schrödinger equation for gravity–capillary water waves on arbitrary depth with constant vorticity. Part 1. // J. Fluid. Mech. 2018. V. 854. P. 146–163.
  12. Досаев А.С., Троицкая Ю.И., Шишина М.И. Моделирование в переменных Дьяченко поверхностных гравитационных волн на свободной границе потока с постоянной завихренностью // Изв. РАН. МЖГ. 2017. № 1. С. 62–73.
  13. Овсянников Л.В. К обоснованию теории мелкой воды // Динамика сплошной среды // Сб. науч. тр. СО АН СССР. Новосибирск: Ин-т гидродинамики, 1973. Вып. 15. С. 104–125.
  14. Dyachenko A.I., Kuznetsov E.A., Spector M.D., Zakharov V.E. Analytical description of the free surface dynamics of an ideal fluid (canonical formalism and conformal mapping) // Phys. Lett. A. 1996. V. 221. № 1–2. P. 73–79.
  15. Дьяченко А.И., Захаров В.Е., Кузнецов Е.А. Нелинейная динамика свободной поверхности идеальной жидкости // Физика плазмы. 1996. V. 22. № 10. P. 916–928. [Dyachenko A.I., Zakharov V.E., Kuznetsov E.A. Nonlinear dynamics of the free surface of an ideal fluid // Plasma Phys. Reports. 1996. V. 22. № 10. P. 829–840.].
  16. Дьяченко А.И. О динамике идеальной жидкости со свободной поверхностью // Докл. АН. 2001. Т. 376. № 1. С. 27–29.
  17. Zakharov V.E., Dyachenko A.I., Vasilyev O.A. New method for numerical simulation of a nonstationary potential flow of incompressible fluid with a free surface // Eur. J. Mech. B Fluids. 2002. V. 21. P. 283–291.
  18. Chalikov D., Sheinin D. Numerical modeling of surface waves based on principal equations of potential wave dynamics // Technical Note. NOAA/NCEP/OMB: 1996. P. 54.
  19. Chalikov D., Sheinin D. Modeling of Extreme Waves Based on Equations of Potential Flow with a Free Surface // J. Comp. Phys. 2005. V. 210. P. 247–273.
  20. Ruban V.P. Water waves over a time-dependent bottom: Exact description for 2D potential flows // Phys. Let. A. 2005. V. 340. № 1–4. P. 194–200.
  21. Шишина М.И. Стационарные поверхностные гравитационные волны на свободной границе потока с постоянной завихренностью // Процессы в геосредах. 2016. V. 8. С. 71–77.
  22. Ruban V.P. Explicit equations for two-dimensional water waves with constant vorticity // Phys. Rev. 2008. E. 77. 037302.

版权所有 © М.И. Шишина, 2023

##common.cookie##