ПРОТЯЖЕННЫЕ СИЛЬНОТОЧНЫЕ ДУГОВЫЕ РАЗРЯДЫ ВО ВНЕШНЕМ МАГНИТНОМ ПОЛЕ В ГАЗОВЫХ СРЕДАХ

Обложка

Цитировать

Полный текст

Аннотация

Экспериментально и теоретически исследованы протяженные (до нескольких десятков сантиметров) сильноточные (сотни ампер) электрические дуги в разных газах атмосферного давления. Изучение таких разрядов проведено на электроразрядном стенде установки П-2000 НИИ механики МГУ. В работе уточнены данные о влиянии внешнего магнитного поля на устойчивость таких разрядов и образование разветвленных токовых каналов. Одно из направлений проведенных исследований — изучение влияния ориентации наложенного на дугу магнитного поля на процессы развития разряда в разных газовых средах, таких как воздух, CO2, Ar, N2. Наиболее полно представлены данные для аргона и азота. Эксперименты проведены в камере с прозрачными стенками. Расчетно-теоретическое исследование проведено на основе электротехнической модели с использованием эмпирических данных по вольт-амперным характеристикам дуг между графитовыми электродами. Выявлено, что на устойчивость горения сильноточных дуг существенное влияние оказывает динамика электронных струй-факелов. Традиционные же модели дуг во внешнем магнитном поле без учета этих факторов показывают, что направление внешнего аксиального поля не влияет на стабильность дуг, влияя лишь на направление их закрутки при развитии винтовой неустойчивости.

Об авторах

А. П Глинов

МГУ им. М.В. Ломоносова, Научно-исследовательский институт механики

Email: gishur@imec.msu.ru
Москва, Россия

А. П Головин

МГУ им. М.В. Ломоносова, Научно-исследовательский институт механики

Email: gnka_golovin_apsj@mail.ru
Москва, Россия

П. В Козлов

МГУ им. М.В. Ломоносова, Научно-исследовательский институт механики

Email: kalevala@mail.ru
Москва, Россия

Список литературы

  1. Финкельбург В., Меккер Г. Электрические дуги и термическая плазма. М.: ИЛ, 1961 с.
  2. Райзер Ю.П. Физика газового разряда. М.: Наука, 1987. 592 с.
  3. Жуков М.Ф., Коротцев А.С., Урюков Б.А. Прикладная динамика термической плазмы. Новосибирск: Наука, 1975. 296 с.
  4. German V.O., Gilnov A.P., Golovin A.P., Kozlov P.V., and Lyubimov G.A. Some Features of Imaging of the Processes Occurring in an Extended Arc Discharge in Atmospheric Pressure Air // Plasma Physics Reports. 2013. V. 39. No. 13. P. 1142–1148.
  5. German V.O., Gilnov A.P., Kozlov P.V., and Lyubimov G.A. Effect of the Design Parameters and the Atmosphere Composition on the Electric Discharge Shape // Fluid Dynamics. 2011. V. 46. No. 6. P. 958–966.
  6. Gilnov A.P., Golovin A.P., Kozlov P.V., Shaleev K.V., Lyubimov G.A. Study of arc discharges on the P-2000 facility // J. Phys.: Conf. 2019. Ser. 1250 012019. https://doi.org/10.1088/1742-6596/1250/1/012019
  7. Gilnov A.P., Golovin A.P., and Kozlov P.V. Studies of initiation and quenching of extensive high-current discharges // J. Phys.: Conf. 2021. Ser. 2055 012006. https://doi.org/10.1088/1742-6596/2055/1/012006
  8. Глинов А.П., Головин А.П., Козлов П.В. Оптимизация струйных плазменных течений во внешнем магнитном поле // Прикладная физика. 2017. № 6. C. 26–32.
  9. Глинов А.П., Головин А.П., Шалеев К.В. Влияние внешнего магнитного поля на устойчивость протяженного дугового разряда и формирование многоканальных токовых структур // Прикладная физика. 2018. № 2. С. 21–28.
  10. Глинов А.П., Головин А.П., Козлов П.В. Изучение инициирования дуговых разрядов размышления первоначально замкнутых электродов // Физико-химическая кинетика в газовой динамике, издательство НИИ механики МГУ (Москва, 2020). Т. 21. № 2. https://doi.org/10.33257/PhChGD.21.2.916
  11. Глинов А.П., Головин А.П., Козлов П.В., Шалеев К.В. Динамика формы электрической дуги и сопутствующих магнитогазодинамических течений, возникающих при размышлении изначально замкнутых электродов // Физико-химическая кинетика в газовой динамике, издательство НИИ механики МГУ (Москва, 2019). Т. 20. № 2. https://doi.org/10.33257/PhChGD.20.2.835
  12. German V.O., Gilnov A.P., Kozlov P.V., Lyubimov G.A. Spectral Properties of a Diffuse–Constructed Arc Discharge // High Temperature. 2012. V. 50. No. 2. P. 167–177.
  13. Gilnov A.P. Stability of Conducting Medium Flows between Plane Continuous Electrodes Inclined to the Horizon // Fluid Dynamics. 2015. V. 50. No. 3. P. 322–331.
  14. Gilnov A.P. Two-Dimensional Analysis of the Stability of Conducting Medium Flows between Permeable Plane Electrodes Inclined to the Horizon // Fluid Dynamics. 2015. V. 50. No. 4. P. 483–493.
  15. Васильев Е.Н., Нестеров Д.А. Вычислительное моделирование взаимодействия электрической дуги с потоком газа // Изв. РАН. МЖТ. 2013. № 2. С. 126–136.
  16. Урусов Р.М., Урусова И.Р. Численное моделирование винтовой формы электрической дуги во внешнем аксиальном магнитном поле // ТВТ. 2017. Т. 55. Вып. 5. С. 661–668.
  17. Недоспасов А.В., Хаит В.Д. Основы физики процессов в устройствах с низкотемпературной плазмой. М.: Энергоатомиздат,1991. 224 с.
  18. Жуков М.Ф., Коротеев А.С. Теория термической электродуговой плазмы. Ч. 1,2. Новосибирск: СО Наука, 1987. 576 с.
  19. Брон О.Б., Сушков Л.К. Потоки плазмы в электрической дуге выключающих аппаратов. Л.: Энергия, 1975. 212 с.
  20. Петров А.Г. Точное решение уравнений осесимметричного движения вязкой жидкости между параллельными плоскостями при их обложении и раздвижении // Изв. РАН. МЖТ. 2019. № 1. С. 58–67.
  21. Ayrton H. The Electric Arc., The Electrician Series, D. Van Nostrand Company, Inc., N.Y., 1902. P. 120–130.
  22. Лойцянский Л.Г. Механика жидкости и газа. М.: Наука, 1973. 736 с.
  23. Григорьев И.С., Мейлихов Е.З. Физические величины. Справочник. М.: Энергоатомиздат,1991. 1234 с.
  24. Кухлинг Х. Справочник по физике. М.: Мир, 1982. 519 с.
  25. Акимов Ю.В., Быкова Н.Г., Забелинский И.Е., Козлов П.В., Левашов В.Ю., Герасимов Г.Я. Программа расчета спектров двухатомных молекул “СПЕКТР” // Свидетельство о регистрации прав на ПО, базу данных № 2023687422 от 14 декабря 2023 года.
  26. Глинов А.П., Головин А.П., Козлов П.В. Особенности горения протяженных сильногенных дуг во внешнем магнитном поле в разных газовых средах // L Международная (Звенигородская) конференция по физике плазмы и УТС, 20–24 марта 2023, ICPAF–2023. Сб. тез. докл., М: ПЛАЗМАИОФАН 2023, 231 с.
  27. Глинов А.П., Головин А.П., Козлов П.В. Исследование инициирования и протекания тока и межэлектронной среды разных газов атмосферного давления в протяженных разрядных камерах // XIII Всероссийский съезд по теоретической и прикладной механике / Сб. тез. доклад. в 4 Т. 21–25 августа 2023 года, Санкт-Петербург. Т. 2. Механика жидкости и газа. Санкт-Петербургский политехнический ун-т Петра Великого. Санкт-Петербург. 2023. С. 743–745.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».