🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Investigation of the Combined Effect of Protons and the Chemotherapy Drug Doxorubicin on the Expression of BIRC5 (Survivin) Genes and PMAIP1 (Noxa) in MCF-7 Cells

Capa

Citar

Texto integral

Resumo

Purpose: Analysis of PMAIP1 and BIRC5 gene expression in breast cancer cells after proton exposure, both as monotherapy and in combination with doxorubicin.

Material and methods: The object of the study was MCF-7 cells. Four study groups were formed: a group exposed to ionizing radiation; a group treated with doxorubicin; a group of combined exposure to ionizing radiation and doxorubicin; and an untreated control group. The cells were irradiated at the Prometheus proton radiation complex at the A.F. Tsyb MRSC, with a scanning proton beam at a dose of 4 Gy (proton energy of 100 MeV) in the center of the distributed Bragg peak. The cells were treated with the chemotherapy drug doxorubicin at a concentration of 0.004 mg/ml 24 hours before irradiation. Total RNA was isolated using an RNA Solo kit and quantified spectrophotometrically (NanoDrop ND-1000). Reverse transcription and amplification were performed simultaneously in real time using the OneTube RT-PCR kit with SYBR Green I as a fluorescent indicator.

Results: The analysis showed that doxorubicin suppresses the expression of BIRC5 (up to 0.02), which is consistent with its known apoptogenic activity. However, the combined effect of doxorubicin and radiation leads to an increase in BIRC5 expression (up to 0.63) and a simultaneous decrease in PMAIP1 expression (up to 0.0003). This indicates the launch of complex compensatory cell survival mechanisms aimed at suppressing apoptosis and enhancing DNA repair under conditions of combined cytotoxic stress. A less pronounced decrease in BIRC5 expression during ionizing radiation monotherapy (up to 0.16) compared with doxorubicin (0.02) is probably due to differences in the nature and kinetics of DNA damage induced by these agents. The data obtained indicate the nonlinear nature of the cellular response to combined exposure and emphasize the difficulty of predicting the effectiveness of combined radiotherapy.

Conclusion: The results demonstrate the antagonistic interaction of doxorubicin and ionizing radiation in the regulation of apoptosis in MCF-7 cells, emphasizing the need for further research to optimize combination cancer therapy.

Sobre autores

A. Melnikova

National Research Nuclear University MEPhI; A.F. Tsyb Medical Radiological Research Center

Email: angelik_melnikova@mail.ru
Obninsk, Russia

A. Afonin

National Research Nuclear University MEPhI

Email: angelik_melnikova@mail.ru
Obninsk, Russia

L. Komarova

National Research Nuclear University MEPhI

Email: angelik_melnikova@mail.ru
Obninsk, Russia

V. Saburov

A.F. Tsyb Medical Radiological Research Center

Email: angelik_melnikova@mail.ru
Obninsk, Russia

Bibliografia

  1. Состояние онкологической помощи населению России в 2023 году / Под ред. Каприна А.Д., Старинского В.В., Шахзадовой А.О. М.: МНИОИ им. П.А.Герцена, 2024. 262 с. [Sostoyaniye Onkologicheskoy Pomoshchi Naseleniyu Rossii v 2023 Godu = The State of Oncological Care for the Population of Russia in 2023. Ed. Kaprin A.D., Starinskiy V.V., Shakhzadova A.O. Мoscow. MNIOI im. P.A. Gertsena Publ., 2024. 262 p. (In Russ.)].
  2. Keta O.D., Todorovic D.V., Bulat T.M., Cirrone P.G., Romano F., Cuttone G., Petrovic I.M., Ristic Fira A.M. Comparison of Human Lung Cancer Cell Radiosensitivity after Irradiations with Therapeutic Protons and Carbon Ions. Exp Biol Med (Maywood). 2017;242;10:1015-1024. doi: 10.1177/1535370216669611.
  3. Delgado Y., Torres A., Milian M. Apoptosis Activation Associated to BH3 only Domain and BCL-2 Homology Domain Proteins: New Way to Design Anti-Cancer Drugs. J. Cancer Prev Curr Res. 2019;10:54-59. doi: 10.15406/jcpcr.2019.10.00391.
  4. Greaves G., Milani M., Butterworth M., Carter R.J., Byrne D.P., Eyers P.A., Luo X., Cohen G.M., Varadarajan S. BH3-Only Proteins are Dispensable for Apoptosis Induced by Pharmacological Inhibition of Both MCL-1 and BCL-X L. Cell Death Differ. 2019;26:1037-1047. doi: 10.1038/s41418-018-0183-7.
  5. Huang K., O’Neill K.L., Li J., Zhou W., Han N., Pang X., Wu W., Struble L., Borgstahl G., Liu Z. BH3-only Proteins Target BCL-XL/MCL-1, Not BAX/BAK, to Initiate Apoptosis. Cell Res. 2019;29:942-952. doi: 10.1038/s41422-019-0231-y.
  6. Hagenbuchner J., Ausserlechner M.J., Porto V., David R., Meister B., Bodner M., Villunger A., Geiger K., Obexer P. The Anti-Apoptotic Protein BCL2L1/Bcl-XL Is Neutralized by pro-Apoptotic PMAIP1/Noxa in Neuroblastoma, Thereby Determining Bortezomib Sensitivity Independent of Prosurvival MCL1 Expression. J Biol Chem. 2010;285:6904-6912. doi: 10.1074/jbc.M109.038331.
  7. Lopez H., Zhang L., George N.M., Liu X., Pang X., Evans J.J., Targy N.M., Luo X. Perturbation of the Bcl-2 Network and an Induced Noxa/Bcl-XL Interaction Trigger Mitochondrial Dysfunction after DNA Damage. J Biol Chem. 2010;285:15016-15026. doi: 10.1074/jbc.M109.086231.
  8. Zhang L., Lopez H., George N.M., Liu X., Pang X., Luo X. Selective Involvement of BH3-Only Proteins and Differential Targets of Noxa in Diverse Apoptotic Pathways. Cell Death Differ. 2011;18:864-873. doi: 10.1038/cdd.2010.152.
  9. Warrier N.M., Agarwal P., Kumar P. Emerging Importance of Survivin in Stem Cells and Cancer: the Development of New Cancer Therapeutics. Stem Cell Rev Rep. 2020;16;5:828-852. doi: 10.1007/s12015-020-09995-4.
  10. Южаков В.В., Корчагина К.С., Фомина Н.К., Корякин С.Н., Соловьев А.Н., Ингель И.Э., Корецкая А.Е., Севанькаева Л.Е., Яковлева Н.Д., Цыганова М.Г. Действие γ-излучения и сканирующего пучка протонов на морфофункциональные характеристики саркомы М-1 крыс // Радиация и риск (Бюллетень Национального радиационно-эпидемиологического регистра). 2020. №2. C. 101-114 [Yuzhakov V.V., Korchagina K.S., Fomina N.K., Koryakin S.N., Solov’yev A.N., Ingel’ I.E., Koretskaya A.Ye., Sevan’kayeva L.Ye., Yakovleva N.D., Tsyganova M.G. Effect of γ-Radiation and Scanning Proton Beam on the Morphofunctional Characteristics of Rat Sarcoma M-1. Radiatsiya i Risk Byulleten’ Prekrashcheniya Radiatsionno-epidemiologicheskogo Registra = Radiation and Risk Bulletin of the Termination of the Radiation Epidemiological Registry. 2020;2:101-114. (In Russ.)]. doi: 10.21870/0131-3878-2020-29-2-101-114.
  11. Calaf G.M., Crispin L.A., Muñoz J.P., Aguayo F., Narayan G., Roy D. Cell Adhesion Molecules Affected by Ionizing Radiation and Estrogen in an Experimental Breast Cancer Model. Int J Mol Sci. 2022;23;20:12674. doi: 10.3390/ijms232012674.
  12. Ritner C., Popovic J., Abouzeid A., Li Y., Paunesku T., Papineni R., Woloschak G. Gene Expression and Early Radiation Response of Two Distinct Neuroblastoma Cell Lines. Oncology. 2023;101;7:446-456. doi: 10.1159/000530902.
  13. Kuchur O.A., Zavisrskiy A.V., Shtil A.A. Transcriptional Reprogramming Regulates Tumor Cell Survival in Response to Ionizing Radiation: a Role of p53. Bull Exp Biol Med. 2023;174;5:659-665. doi: 10.1007/s10517-023-05764-8.
  14. Popescu R.C., Savu D.I., Bierbaum M., Grbenicek A., Schneider F., Hosser H., Vasile B.Ș., Andronescu E., Wenz F., Giordano F.A., Herskind C., Veldwijk M.R. Intracellular Delivery of Doxorubicin by Iron Oxide-Based Nano-Constructs Increases Clonogenic Inactivation of Ionizing Radiation in HeLa Cells. Int J Mol Sci. 2021;22;13:6778. doi: 10.3390/ijms22136778.
  15. George N., Joshi M.B., Satyamoorthy K. DNA Damage-Induced Senescence is Associated with Metabolomic Reprogramming in Breast Cancer Cells. Biochimie. 2024;216:71-82. doi: 10.1016/j.biochi.2023.09.021.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».