The Kolmogorov–Sinai Entropy in the Setting of Fuzzy Sets for Atmospheric Corrosion Image Texture Analysis


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Image analysis gives us a new opportunity in corrosion science. Fuzzy Kolmogorov–Sinai (K–S) entropy is used to quantify the average amount of uncertainty of a dynamical system through a sequence of observations. The fuzzy K–S entropy for horizontal and vertical orientations is sensitive to distribution of corrosion product or corrosion degree, and the entropy values decrease as the corrosion becomes more and more serious. It is concluded that the fuzzy K–S entropy is illustrated as an effective feature for image analysis and corrosion classification.

Sobre autores

Yang Song

Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering

Email: gaozhiming@tju.edu.cn
República Popular da China, Tianjin, 300072

Bing Zhou

CNPC research institute of engineering technology

Email: gaozhiming@tju.edu.cn
República Popular da China, Tianjin, 300451

Yingying Zhang

CNPC research institute of engineering technology

Email: gaozhiming@tju.edu.cn
República Popular da China, Tianjin, 300451

Xinhui Nie

Guodian Science and Technology Research Institute

Email: gaozhiming@tju.edu.cn
República Popular da China, Nanjing, 210023

Chao Ma

Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering

Email: gaozhiming@tju.edu.cn
República Popular da China, Tianjin, 300072

Zhiming Gao

Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering

Autor responsável pela correspondência
Email: gaozhiming@tju.edu.cn
República Popular da China, Tianjin, 300072

Da-Hai Xia

Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering

Email: gaozhiming@tju.edu.cn
República Popular da China, Tianjin, 300072

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018