Studies of selectivity of oxygen reduction reaction in acidic electrolyte on electrodes modified by products of pyrolysis of polyacrylonitrile and metalloporphyrins


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The rotating disk electrode technique was used to study in 0.5 M H2SO4 catalytic properties of products of pyrolysis of the metal-free polyacrylonitrile/carbon black composite, polyacrylonitrile/iron/carbon black composite, and also supported pyropolymers of Co(II) tetramethoxyphenyl porphyrine (CoTMPP) and Fe(III) tetramethoxyphenyl porphyrin chloride (FeTMPPCl). It is shown that the metal-free polyacrylonitrile/carbon black composite catalyzes the oxygen reduction reaction via the parallel path. Addition of up to 2% of Fe into the composite results in abrupt growth of the catalytic activity and share of the four-electron reaction, which provides the parallel–serial reaction path. The parallel reaction with no further catalytic conversion of H2O2 occurs on catalysts of the CoTMPP/Vulcan XC72 and FeTMPPCl/Vulcan XC72 series. The chemical composition is one of the key factors affecting activity and selectivity of CoTMPP/Vulcan XC72 catalysts. An increase in the precursor content from 5 to 30% is accompanied by an increase in selectivity k1/k2 from 0.14–0.30 to 0.5–1.7, where k1 is the rate constant of the reaction of O2 reduction to H2O, k2 is the rate constant of the reaction of O2 reduction to H2O2.

Sobre autores

E. Davydova

Frumkin Institute of Physical Chemistry and Electrochemistry

Autor responsável pela correspondência
Email: elena.s.davydova@yandex.ru
Rússia, Leninskii pr. 31, Moscow, 119071

M. Tarasevich

Frumkin Institute of Physical Chemistry and Electrochemistry

Email: elena.s.davydova@yandex.ru
Rússia, Leninskii pr. 31, Moscow, 119071


Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies