Formation of silicon carbide from microsilica waste by means of lignite semicoke


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The formation of silicon carbide from briquetted batch consisting of microsilica waste from silicon and silicon-alloy production is investigated. The batch is treated at 1873, 1923, and 1973 K, for 5–30 min, with various reducing agents: lignite semicoke, coal semicoke, coke breeze, and coke dust. The best results are obtained when using lignite semicoke from the Berezovsk deposit in Kansko-Achinsk Basin: the yield of silicon carbide is 97.00–97.62%; it constitutes 82.52–84.90% of the products obtained. The optimal treatment temperature and time are determined: 1923–1973 K for 15–20 min. The products consist predominantly of cubic silicon carbide (β SiC). Chemical enrichment increases the SiC content in the products to 90–91%; this is higher than in abrasive micropowder of grain size 1–2 μm. The effectiveness of enrichment in terms of oxide and iron impurities is high: 87–95%. The silicon carbide is characterized by a high silica content: more than 7%. Accordingly, it may be regarded as a promising material for the production of siliconcarbide refractories used in silica binder. Silicon carbide is obtained as micropowder with irregular particles in the size range 0.2–1.0 μm.

作者简介

A. Anikin

Siberian State Industrial University

编辑信件的主要联系方式.
Email: kafcmet@sibsiu.ru
俄罗斯联邦, Novokuznetsk

G. Galevskii

Siberian State Industrial University

Email: kafcmet@sibsiu.ru
俄罗斯联邦, Novokuznetsk

V. Rudneva

Siberian State Industrial University

Email: kafcmet@sibsiu.ru
俄罗斯联邦, Novokuznetsk

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2016