Nanohardness of wear-resistant surfaces after electron-beam treatment


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The nanohardness, Young’s modulus, and defect substructure of the metal layer applied to Hardox 450 low-carbon martensitic steel by high-carbon powder wire (diameter 1.6 mm) of different chemical composition (containing elements such as vanadium, chromium, niobium, tungsten, manganese, silicon, nickel, and boron) and then twice irradiated by a pulsed electron beam are studied, so as to determine the correct choice of wear-resistant coatings for specific operating conditions and subsequent electron-beam treatment. The metal layer is applied to the steel surface in protective gas containing 98% Ar and 2% CO2, with a welding current of 250–300 A and an arc voltage of 30–35 V. The applied metal is modified by the application of an intense electron beam, which induces melting and rapid solidification. The load on the indenter is 50 mN. The nanohardness and Young’s modulus are determined at 30 arbitrarily selected points of the modified surface. The defect structure of the applied metal surface after electron-beam treatment is studied by means of a scanning electron microscope. The nanohardness and Young’s modulus of the applied metal after electron-beam treatment markedly exceed those of the base. The increase is greatest when using powder wire that contains 4.5% B. A system of microcracks is formed at the surface of the layer applied by means of powder wire that contains 4.5% B and then subjected to an intense pulsed electron beam. No microcracks are observed at the surface of layers applied by means of boron-free powder wire after intense pulsed electron-beam treatment. The boron present increases the brittleness. The increase in strength of the applied layer after electron-beam treatment is due to the formation of a structure in which the crystallites (in the size range from tenths of a micron to a few microns) contain inclusions of secondary phases (borides, carbides, carboborides). The considerable spread observed in the nanohardness and Young’s modulus is evidently due to the nonuniform distribution of strengthening phases.

Об авторах

V. Kormyshev

Siberian State Industrial University

Автор, ответственный за переписку.
Email: 89239230000@mail.ru
Россия, Novokuznetsk

Yu. Ivanov

Institute of High-Current Electronics, Siberian Branch; Tomsk Polytechnic University

Email: 89239230000@mail.ru
Россия, Tomsk; Tomsk

V. Gromov

Siberian State Industrial University

Email: 89239230000@mail.ru
Россия, Novokuznetsk

S. Konovalov

Samara National Research University

Email: 89239230000@mail.ru
Россия, Samara

A. Teresov

Institute of High-Current Electronics, Siberian Branch; Tomsk Polytechnic University

Email: 89239230000@mail.ru
Россия, Tomsk; Tomsk

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Allerton Press, Inc., 2017

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».