An Assessment of the Use of Mesoporous Silica Materials to Improve Pulsed Dipolar Spectroscopy


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Protein immobilization in mesoporous silica nanoparticles has attracted much attention due to its wide range of applications. However, it remains largely unexplored how the use of mesopores can alter the spatial distribution of encapsulated biomolecules so as to improve pulsed dipolar spectroscopy sensitivity. Here, we performed electron spin resonance measurements for three different spin-labeled biomolecules (including two different peptides and a protein) encapsulated in various types of mesoporous materials differing in textural properties such as nanochannel length (e.g., 0.2–4 μm) and average pore diameter (e.g., 6–11 nm, approximately). Our results show that biomolecules are clustered somewhat upon the encapsulation into mesopores, and that due to the clustering, instantaneous diffusion plays an important role in the spin relaxation in nanochannels. The extent of molecular clustering exhibits a clear positive correlation with the length of nanochannels, whereas it shows little correlation with pore diameters. Among the materials studied, mesoporous materials with the shortest length of nanochannels are most effective to reduce spin clustering, thus suppressing the unwanted instantaneous diffusion and enhancing spin–spin relaxation time. This study has opened a possibility of improving the quality of pulsed dipolar spectroscopy with mesoporous silica nanoparticles.

作者简介

Yei-Chen Lai

Department of Chemistry, National Tsing Hua University

Email: ywchiang@gapp.nthu.edu.tw
台湾, Hsinchu, 30013

Albert Chang

Department of Chemistry, National Tsing Hua University

Email: ywchiang@gapp.nthu.edu.tw
台湾, Hsinchu, 30013

Chia-Min Yang

Department of Chemistry, National Tsing Hua University

Email: ywchiang@gapp.nthu.edu.tw
台湾, Hsinchu, 30013

Yun-Wei Chiang

Department of Chemistry, National Tsing Hua University

编辑信件的主要联系方式.
Email: ywchiang@gapp.nthu.edu.tw
ORCID iD: 0000-0002-2101-8918
台湾, Hsinchu, 30013


版权所有 © Springer-Verlag GmbH Austria, part of Springer Nature, 2018
##common.cookie##