Magic-Angle Spinning NMR and Molecular Mobility in Heterogeneous Systems


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Magic-angle sample spinning (MAS) nuclear magnetic resonance (NMR) measurements are treated for heterogeneous systems with nanometer dimensions. An appreciable line narrowing in the MAS NMR spectra of the embedded molecules may be achieved also in the cases when the molecules still possess an appreciable local mobility. It appears that the MAS frequencies are of comparable order of magnitude as the frequencies which characterize the random molecular motional processes and which compete with MAS. It will be shown that this behavior may occur if inhomogeneous local magnetic fields due to susceptibility effects have a dominating influence on the widths and shapes of the resonance NMR lines. Properties of these local fields are described. Spectra simulations are carried for molecules embedded in these heterogeneous systems when the coherent averaging by MAS is superimposed by random local motions. This situation may occur for molecules contained in nanoporous solids and also for heterogeneous systems like membranes and biological tissues with flexible components like water, lipids, and small peptides. Several examples are treated which reveal advantages and limitations of these experiments and their theoretical interpretation.

Об авторах

Dieter Michel

Faculty of Physics and Earth Sciences, Leipzig University

Автор, ответственный за переписку.
Email: michel@physik.uni-leipzig.de
ORCID iD: 0000-0001-8265-1461
Германия, Linné-Straße 5, Leipzig, 04103

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer-Verlag GmbH Austria, part of Springer Nature, 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).