Analysis of the Regularization Parameters of Primal–Dual Interior Method for Convex Objectives Applied to 1H Low Field Nuclear Magnetic Resonance Data Processing


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Two-dimensional low-field hydrogen nuclear magnetic resonance (2D 1H LF-NMR) analysis of chemical compounds measures T1 and T2 relaxation times observed as exponential decay curves. Once relaxation curves are measured and stored in the format of discrete digital signals, they must be transformed, mathematically, into spectra that can be read and interpreted. We used primal–dual interior method for convex objectives (PDCO) that provided more accurate reconstructions than the standard algorithms. It is the objective of this paper to estimate the most suitable PDCO parameterization that provide accurate and robust reconstructions of relaxation curves into 2D spectra for LF-NMR under different signal-to-noise ratios. Finding optimal regularization parameters is an active field of mathematical research. PDCO, however, by making use of two regularization parameters instead of a single one, presents a much harder task, where the consolidated search criteria of a single parameter cannot be extended to two parameters. We featured a method based on numerical experiments and simulations that identified optimal and unique model coefficients that maximize PDCO reconstruction accuracy under different signal-to-noise conditions. The coefficients, as determined for artificial signals, increase the confidence of accurate reconstruction for 2D LF-NMR analysis on real lab samples.

Об авторах

Salvatore Campisi-Pinto

Phyto-Lipid Biotechnology Laboratory, Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev; Department of Mathematics and Computer Science Program of Industrial Engineering and Management, The Open University

Email: wiesman@bgu.ac.il
Израиль, Beer-Sheva, 84105; Derekh ha-Universita 1, Ra’anana, 4353701

Ofer Levi

Department of Mathematics and Computer Science Program of Industrial Engineering and Management, The Open University

Email: wiesman@bgu.ac.il
Израиль, Derekh ha-Universita 1, Ra’anana, 4353701

Diamanta Benson

Department of Mathematics and Computer Science Program of Industrial Engineering and Management, The Open University

Email: wiesman@bgu.ac.il
Израиль, Derekh ha-Universita 1, Ra’anana, 4353701

Meir Cohen

Phyto-Lipid Biotechnology Laboratory, Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev

Email: wiesman@bgu.ac.il
Израиль, Beer-Sheva, 84105

Maysa Resende

Phyto-Lipid Biotechnology Laboratory, Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev

Email: wiesman@bgu.ac.il
Израиль, Beer-Sheva, 84105

Michael Saunders

Department of Management Science and Engineering (MS&E), Stanford University

Email: wiesman@bgu.ac.il
США, 475 Via Ortega, Stanford, CA, 94305-4042

Charles Linder

Phyto-Lipid Biotechnology Laboratory, Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev

Email: wiesman@bgu.ac.il
Израиль, Beer-Sheva, 84105

Zeev Wiesman

Phyto-Lipid Biotechnology Laboratory, Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev

Автор, ответственный за переписку.
Email: wiesman@bgu.ac.il
Израиль, Beer-Sheva, 84105

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer-Verlag GmbH Austria, part of Springer Nature, 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).