Motion Adaptive Wavelet Thresholding for Recovery of Compressively Sampled Static and Dynamic MR Images


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Iterative shrinkage algorithms like parallel coordinate descent and separable surrogate functional use wavelet thresholding with uniform and empirically selected threshold values to recover the under-sampled magnetic resonance (MR) images. In this paper, an adaptive thresholding parameter, for the recovery of static and dynamic MR images, is derived and used in wavelet domain shrinkage. A modified iterative shrinkage thresholding algorithm based on the derived parameter is also proposed. Simulation results show that adaptive wavelet thresholding yields significantly higher signal-to-noise ratio and correlation than the fixed thresholding value. The algorithm based on the adaptive threshold is experimentally tested for static and dynamic MR images with varying acceleration rates, and it has been shown that it outperforms the fixed thresholding value algorithm.

Авторлар туралы

Muhammad Bilal

Department of Electrical Engineering, Faculty of Engineering and Technology, International Islamic University Islamabad

Хат алмасуға жауапты Автор.
Email: m.bilal@iiu.edu.pk
ORCID iD: 0000-0001-8768-3526
Пәкістан, Islamabad

Jawad Shah

Department of Electrical Engineering, UniKL BMI

Хат алмасуға жауапты Автор.
Email: jawad@unikl.edu.my
Малайзия, Kuala Lumpur

I. Qureshi

Department of Electronic Engineering, Institute of Signals, Systems and Soft Computing (ISSS), Air University

Email: jawad@unikl.edu.my
Пәкістан, Islamabad

Abdul Ahmed

Department of Electronic Engineering, Institute of Signals, Systems and Soft Computing (ISSS), Air University

Email: jawad@unikl.edu.my
Пәкістан, Islamabad

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer-Verlag GmbH Austria, part of Springer Nature, 2018