Design and Optimization of a Four-Channel Received Coil for Vertical-Field MRI


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Signal-to-noise ratio (SNR) is an important factor in magnetic resonance imaging (MRI), and it strongly depends on the structure of radio frequency (RF) coils. To obtain a high SNR and uniform image in a vertical-field MRI at 0.5 T, a four-channel received coil has been designed and optimized by establishing the relationship between coil geometry and SNR. Then, the most efficient design of coil array is optimized by the Particle Swarm Optimization (PSO) algorithm. After optimization, the coil is manufactured, where the decoupling is implemented with only inductors and operated at the permanent magnet MRI system built in our laboratory. Finally, SNR map with pixel-by-pixel manner is applied to evaluate the imaging quality, which shows the accuracy between simulated and experimental results. Furthermore, a higher SNR and a more homogeneity in the image have been achieved by the optimized coil array. Hence, this optimized design for the phased-array received coil in vertical-field MRI is verified and applicable.

Об авторах

Qiaoyan Chen

Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences; University of Chinese Academy of Sciences

Email: xiaodong.yang@sibet.ac.cn
Китай, Suzhou, Jiangsu, 215163; Beijing, 100049

Yajie Xu

Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences

Email: xiaodong.yang@sibet.ac.cn
Китай, Suzhou, Jiangsu, 215163

Yan Chang

Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences

Email: xiaodong.yang@sibet.ac.cn
Китай, Suzhou, Jiangsu, 215163

Xiaodong Yang

Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences

Автор, ответственный за переписку.
Email: xiaodong.yang@sibet.ac.cn
Китай, Suzhou, Jiangsu, 215163

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer-Verlag Wien, 2016

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).