Determining Uncertainty in NMR T2 Distribution Using Frequentist Method


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Petrophysicists use the T2 distribution from nuclear magnetic resonance (NMR)-logging data inversion to evaluate reservoir. However, low SNR NMR-logging data lead to a great uncertainty of T2 distribution, and therefore, analyzing the uncertainty of T2 distribution has a guiding significance for NMR-logging evaluation. For regularized solution from linear inversion, the mean square error which jointly determined by variance and bias can be used to measure its uncertainty. The variance of regularized T2 distribution can be calculated from the variance of the noise level of measured data. Since the true T2 distribution is unknown, the bias of regularized T2 distribution cannot be accurately calculated. This paper calculated the upper and lower boundaries of the bias of regularized T2 distribution for analyzing the uncertainty of regularized T2 distribution based on the frequentist method, using the NMR echo amplitudes, T2 distribution amplitudes, T2 distribution slopes, and T2 distribution curvatures as prior information to restrict the range of T2 distribution amplitude. The results indicate that as the noise level of measured data increases, the T2 distribution uncertainty increases and the confidence interval of T2 distribution broadens. The confidence interval width of T2 distribution from the norm-smoothing method is narrower than that of from the curvature-smoothing method.

Об авторах

Youlong Zou

State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum

Email: xieranhong@cup.edu.cn
Китай, Beijing, 102249

Ranhong Xie

State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum

Автор, ответственный за переписку.
Email: xieranhong@cup.edu.cn
Китай, Beijing, 102249

Yejiao Ding

State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum

Email: xieranhong@cup.edu.cn
Китай, Beijing, 102249

Alon Arad

Shell International Exploration and Production Inc.

Email: xieranhong@cup.edu.cn
США, Houston, TX, 77079

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer-Verlag Wien, 2016

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».