Compressively Sampled MRI Recovery Using Modified Iterative-Reweighted Least Square Method


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Magnetic resonance imaging (MRI) is a medical imaging modality used for high-resolution soft-tissue imaging of human body. In traditional MRI acquisition methods, sampling is performed at Nyquist rate to store data in k-space. The MR image is recovered using inverse Fast Fourier Transform (FFT). This approach results in slow data acquisition process, which is uncomfortable for the patients. Compressed Sensing (CS) acquisition approach offers nearly perfect recovery of MR image using non-linear reconstruction algorithms even from partial k-space data. This study presents a novel method to reconstruct MR image from highly under-sampled data using modified Iterative-Reweighted Least Square (IRLS) method with additional data consistency constraints. IRLS is an effective numerical method used in convex optimization problems. The proposed algorithm was applied on original human brain and Shepp–Logan phantom image, and the data acquired from the MRI scanner at St. Mary’s Hospital, London. The experimental results show that the proposed algorithm outperforms Projection onto Convex Sets (POCS), Separable Surrogate Functional (SSF), Iterative-Reweighted Least Squares (IRLS), Zero Filling (ZF), and Low-Resolution (LR) methods based on the parameters, e.g. Peak Signal-to-Noise Ratio (PSNR), Improved Signal-to-Noise Ratio (ISNR), Fitness, Correlation, Structural SIMilarity (SSIM) index, and Artifact Power (AP).

Об авторах

Hassaan Haider

Department of Electronic Engineering, Faculty of Engineering and Technology, International Islamic University

Автор, ответственный за переписку.
Email: hassaan.haider@iiu.edu.pk
ORCID iD: 0000-0002-2662-604X
Пакистан, Islamabad

Jawad Shah

Department of Electronic Engineering, Faculty of Engineering and Technology, International Islamic University

Email: hassaan.haider@iiu.edu.pk
Пакистан, Islamabad

Ijaz Qureshi

Department of Electrical Engineering, Air University, Institute of Signals, Systems and Soft Computing

Email: hassaan.haider@iiu.edu.pk
Пакистан, Islamabad

Hammad Omer

Department of Electrical Engineering, COMSATS Institute of Information Technology

Email: hassaan.haider@iiu.edu.pk
Пакистан, Islamabad

Kushsairy Kadir

British Malaysian Institute, Universiti Kuala Lumpur

Email: hassaan.haider@iiu.edu.pk
Малайзия, Gombak

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer-Verlag Wien, 2016

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».