Accelerated 3D Coronary Vessel Wall MR Imaging Based on Compressed Sensing with a Block-Weighted Total Variation Regularization


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Coronary vessel wall magnetic resonance (MR) imaging is important for heart disease diagnosis but often suffers long scan time. Compressed sensing (CS) has been previously used to accelerate MR imaging by reconstructing an MR image from undersampled k-space data using a regularization framework. However, the widely used regularizations in the current CS methods often lead to smoothing effects and thus are unable to reconstruct the coronary vessel walls with sufficient resolution. To address this issue, a novel block-weighted total variation regularization is presented to accelerate the coronary vessel wall MR imaging. The proposed regularization divides the image into two parts: a region-of-interest (ROI) which contains the coronary vessel wall, and the other region with less concerned features. Different penalty weights are given to the two regions. As a result, the small details within ROI do not suffer from over-smoothing while the noise outside the ROI can be significantly suppressed. Results with both numerical simulations and in vivo experiments demonstrated that the proposed method can reconstruct the coronary vessel wall from undersampled k-space data with higher qualities than the conventional CS with the total variation or the edge-preserved total variation.

Об авторах

Zhongzhou Chen

Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences

Email: gx.xie@siat.ac.cn
Китай, Shenzhen; Shenzhen

Xiaoyong Zhang

Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Centers for Biomedical Engineering, College of Information Science and Technology, University of Science and Technology of China

Email: gx.xie@siat.ac.cn
Китай, Shenzhen; Hefei

Caiyun Shi

Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences

Email: gx.xie@siat.ac.cn
Китай, Shenzhen

Shi Su

Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences

Email: gx.xie@siat.ac.cn
Китай, Shenzhen

Zhaoyang Fan

Biomedical Imaging Research Institute, Cedars-Sinai Medical Center

Email: gx.xie@siat.ac.cn
США, Los Angeles, CA

Jim Ji

Department of Electrical and Computer Engineering, Texas A&M University

Email: gx.xie@siat.ac.cn
США, College Station, TX

Guoxi Xie

Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences

Автор, ответственный за переписку.
Email: gx.xie@siat.ac.cn
Китай, Shenzhen

Xin Liu

Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences

Email: gx.xie@siat.ac.cn
Китай, Shenzhen

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer-Verlag Wien, 2017

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).