Critical analysis of data on thorium migration parameters in the soil–plant system

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This review critically examines information on parameters characterizing the bioavailability of thorium in the soil–plant system, including thorium distribution coefficients in soil (Kd) and soil-to-plant concentration ratios of thorium (CR). It evaluates data from international projects summarizing information on thorium migration in the environment, as well as current research on thorium accumulation by plants. The review notes that the behaviour of thorium in the terrestrial environment is largely determined by its low mobility in soil. Concentration ratios of thorium accumulation by plants are relatively low: the highest CR values are observed for natural grass vegetation (n×10–2 kg/kg), while the lowest values are noted for corn, white rice, and tubers (n×10–5 — n×10–4 kg/kg). The review also highlights the role of foliar contamination of plants and differences in the accumulation of thorium isotopes 228Th, 230Th, and 232Th by plants. It concludes that the dependence of CR on the concentration of thorium in the soil is nonlinear, which limits the use of these data for radiological assessments without supplementary information.

全文:

受限制的访问

作者简介

Sergey Fesenko

NRC “Kurchatov Institute” — Russian Research Institute of Radiology and Agroecology

编辑信件的主要联系方式.
Email: Corwin_17F@mail.ru
ORCID iD: 0000-0003-1238-3689

Chief researcher

俄罗斯联邦, 249035 Kaluga Region, Obninsk, Kievskoye shosse, 1, bldg. 1

Evgeniya Emlyutina

NRC “Kurchatov Institute” — Russian Research Institute of Radiology and Agroecology

Email: Corwin_17F@mail.ru
ORCID iD: 0000-0002-8660-8679

Researcher

俄罗斯联邦, 249035 Kaluga Region, Obninsk, Kievskoye shosse, 1, bldg. 1

参考

  1. Алексахин Р.М., Архипов Н.П., Бархударов Р.М. и др. Тяжелые естественные радионуклиды в биосфере: Миграция и биологическое действие на популяции и биогеоценозы. М.: Наука, 1990. 368 с. [Alexakhin, R.M., Arkhipov, N.P., Barkhudarov, R.M. et al. Heavy Natural Radionuclides in Biosphere: Migration and Biological Effects on Population and Biogeocenoses. M.: Nauka, 1990. 368 p. (In Russ.)].
  2. Geras’ikin S.A., Evseeva T.I., Maistrenko T.A. et al. Effects on non-human species inhabiting areas with enhanced level of natural radioactivity in the north of Russia: a review. J. Environ. Radioact. 2007; 94:151–182.
  3. Boyle R.W. Geochemical prospecting for thorium and uranium deposits. Amsterdam: Elsevier Scientific Publishing Company, 1982. 498 p.
  4. UNSCEAR 2000 Report to the General Assembly, with scientific annexes, Annex B. New York: United Nations, 2000. P. 84–156.
  5. Fruchter J.S., Robertson D.E., Evans J.C. et al. Mount St. Helens ash from the 18 May 1980 eruption: chemical, physical, mineralogical, and biological properties. Science. 1980;209:1116–1125.
  6. Kuroda P., Barbod T., Bakhtiar S. Effect of the eruptions of Mount St. Helens and Elchichon on the ratios of thorium and uranium isotopes in rain. J. Radioanal. Nucl. Chem. 1987;111:137–143.
  7. Kolb W. Seasonal fluctuations of the uranium and thorium contents of aerosols in ground-level air. J. Environ. Radioact. 1989;9:61–75.
  8. Fesenko S., Sanzharova N., Vidal M. et al. Radioecological definitions, soil, plant classifications and reference ecological data for radiological assessments. In: Quantification of Radionuclide Transfer in Terrestrial and Freshwater Environments for Radiological Assessments. IAEA–TECDOC–1616 Vienna: IAEA, 2009, 7–26.
  9. Фесенко С., Фогт Г. Ядерная энергетика и окружающая среда: обзор проектов МАГАТЭ. Радиац. биология. Радиоэкология. 2012;52(6):636–651. [Fesenko S., Fogt G. Yadernaya energetika i okruzhayushchaya sreda: obzor proektov MAGATE. Radiatsionnaya Biologiya. Radioekologiya. 2012;52(6):636–651. (In Russ.)].
  10. IAEA 2010. Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments. IAEA–TRS–472. Vienna: IAEA, 2010.
  11. IAEA 2014. Handbook of parameter values for the prediction of radionuclide transfer to wildlife. IAEA–TRS–479. Vienna: IAEA, 2014.
  12. Фесенко С.В., Емлютина Е.С. Концентрация тория в природных средах: обзор мировых данных. Радиац. биология. Радиоэкология. 2020;60(5): 542–555. [Fesenko S.V., Emlyutina E.S. Thorium Concentrations in the Environment: A Review of the World Data. Radiation Biology. Radioecology. 2020; 60(5):542–555. (In Russ.).]
  13. Fesenko S.V., Emlyutina E.S. Thorium Concentrations in the Environment: A review of the global data. Biol. Bull. 2021;48(11):2086–2097.
  14. Фесенко С.В., Емлютина Е.С. Содержание тория в растениях: обзор мировых данных. Радиац. биология. Радиоэкология. 2022;62(4):441–452. [Fesenko S.V., Emlyutina E.S. Thorium Concentration in Plants: A Review of World Data. Radiation Biology. Radioecology. 2022;62(4):441–452. (In Russ.).]
  15. Фесенко С.В., Емлютина Е.С. Содержание тория в наземных и пресноводных организмах: Oбзор мировых данных. Радиац. биология. Радиоэкология. 2023;63(1):85–98. [Fesenko S.V., Emlyutina E.S. Thorium Concentrations in Terrestrial and Freshwater Organisms: A Review of the World Data. Radiation Biology. Radioecology. 2023; 63(1):85–98. (In Russ.).]
  16. Vidal M., Rigol A., Gil-Garcia C.J. Soil-radionuclide interactions. In: Quantification of Radionuclide Transfer in Terrestrial and Freshwater Environments for Radiological Assessments. IAEA–TECDOC–1616. Vienna, 2009. P. 71–102.
  17. Vandenhove H., Gil-Garcia C.J., Rigol A., Vidal M. New best estimates for radionuclide solid–liquid distribution coefficients in soil. Part 2. Naturally occurring radionuclides. J. Environ. Radioactivity. 2009;100:697–703.
  18. United States Environmental Protection Agency. Toxicological profile for thorium. Agency for toxic substances and disease registry. US Public Health Service in collaboration with U.S. Environmental Protection Agency. Washington D.C. (1990) 186p.
  19. Syed H.S. Comparison studies adsorption of thorium and uranium on pure clay minerals and local Malaysian soil sediments. J. Radioanal. Nucl. Chem. 1999;241 (1):11–14.
  20. Gascoyne M. Geochemistry of the Actinides and Their Daughters. In: Uranium Series Disequilibrium. Applications to Environmental Problems. Ivanovich M. and Harmon R.S. (Eds.). Oxford: Clarendon Press. 1,982. 33–55.
  21. Sanzharova N.I., Fesenko S.V., Alexakhin R.M. et al. Changes in the forms of C 137 s and its availability for plants as dependent on properties of fallout after the Chernobyl nuclear power plant accident. Sci. Total Environ. 1994;154:9.
  22. Rigol A., Roig M., Vidal M., Rauret G. Sequential extractions for the study of radiocaesium and radiostrontium dynamics in mineral and organic soil from Western Europe and Chernobyl areas. Environ. Sci. Technol. 1999;33:887.
  23. Popic J.M., Salbu B., Skipperud L. Ecological transfer of radionuclides and metals to free-living earthworm species in natural habitats rich in NORM. Sci. Total Environ. 2012;414:167–176.
  24. Skipperud L., Strømman G., Yunusov M. et al. Environmental impact assessment of radionuclide and metal contamination at the former U sites Taboshar and Digmai, Tajikistan. J. Environ. Radioact. 2013;123:50–62.
  25. Sanzharova N., Fesenko S., Reed E. Processes governing radionuclide transfer to plants. In:Quantification of Radionuclide Transfer in Terrestrial and Freshwater Environments for Radiological Assessments. IAEA–TECDOC–1616. Vienna,: 2009. P. 123–138.
  26. Sanzharova N., Shubina O., Vandenhove H. et al. Root uptake: temperate environment. In: Quantification of Radionuclide Transfer in Terrestrial and Freshwater Environments for Radiological Assessments. IAEA–TECDOC–1616. Vienna, 2009. P. 139–206.
  27. Velasco H., Ayub J. Root uptake: tropical and sub-tropical environments. In: Quantification of Radionuclide Transfer in Terrestrial and Freshwater Environments for Radiological Assessments. IAEA–TECDOC–1616. Vienna, 2009. P. 207–238
  28. Uchida S., Tagami K., Shang Z.R., Choi Y.H. Transfer to rice. In: Quantification of Radionuclide Transfer in Terrestrial and Freshwater Environments for Radiological Assessments, TECDOC Series, 2009, 239–252.
  29. Uchida S., Tagami K., Hirai I. Soil-to-plant transfer factors of stable elements and naturally occurring radionuclides: (2) Rice collected in Japan. J. Nucl. Sci. Techn. 2007;44:779–790.
  30. Martinez-Aguirre A., Garcia-Orellanab I., Garcia-Leon M. Transfer of Natural Radionuclides from Soils to Plants in a Marsh Enhanced by the Operation of Non-Nuclear Industries. J. Environ. Radioact. 1997; 35:149–171.
  31. Vera Tome F., Blanco Rodriguez M.P., Lozano J.C. Soil-to-plant transfer factors for natural radionuclides and stable elements in a Mediterranean area. J. Environ. Radioact. 2003;65: 161–175.
  32. Škoko B., Marović G., Babić D. Radioactivity in the Mediterranean flora of the Kastela Bay, Хорватия. J. Environ. Radioact. 2014;135:36–43.
  33. Škoko B., Marović G., Babić D., Sostarić M., Jukić M. Plant uptake of U 238 , U 235 , T 232 h, R 226 a, P 210 b and K 40 from a coal ash and slag disposal site and control soil under field conditions: A preliminary study. J. Environ. Radioact. 2017;172:113–121.
  34. Štrok M., Smodiš B. Soil-to-plant transfer factors for natural radionuclides in grass in the vicinity of a former uranium mine. Nucl. Engin. Design. 2013;261:279–284.
  35. Sheppard S.C., Sheppard M.I., Ilin M., Thompson P. Soil-to-plant transfers of uranium series radionuclides in natural and contaminated settings. Radioprot. Suppl. 1. 2005; 40: S253–S259.
  36. Ibrahim S.I., Whicker W. Comparative uptake of U and Th by native plants at a U production site. Health Phys. 1987;54(4):413–419.
  37. Linsalata P., Morse R., Ford H., Eisenbad M. Transport pathways of Th, U, Ra and La to cattle tissues. J. Environ. Radioact. 1989; 10:115–140.
  38. Ramli A.T., Wahab A., Hussein M.A., Wood A.K. Environmental U 238 and T 232 h concentration measurements in an area of high-level natural background radiation at Palong, Johor, Malaysia. J. Environ. Radioact. 2005;80:287–304.
  39. Chen S.B., Zhu Y.G., Hu Q.H. Soil to plant transfer of U 238 , R 226 a, T 232 h on a uranium mining-impacted soil from south-eastern China. J. Environ. Radioact. 2005;82:223–236.
  40. Kritsananuwat R., Sahoo S.K., Arae H., Fukushi M. Distribution of U 238 and T 232 h in selected soil and plant samples as well as soil to plant transfer. Radioanal. Nucl. Chem. 2015;303:2571–2577.
  41. Lindahl P., Maquet A., Hult M. et al. Natural radioactivity in winter wheat from organic and conventional agricultural systems. J. Environ. Radioact. 2011;102:163–169.
  42. Amaral E.C.S., Rochedo E.R.R., Paretzke H.G., Franca E.P. The radiological impact of agricultural activities in an area of high natural radioactivity. Radiat. Protect. Dosim. 1992; 45:289–292.
  43. Pulhani V.A., Dafauti S., Hegde A.G., Sharma R.M., Mishra U.C. Uptake and distribution of natural radioactivity in wheat plants from soil. J. Environ. Radioact. 2005;79:331–346.
  44. Uchida S., Tagami K., Hirai I., Komamura M. Transfer factors of radionuclides and stable elements from soil to rice and wheat. Radioprot. 2005;40:S129–S134
  45. Мордберг Е.Л., Александрук В.М., Ковыгин Г.В. и др. Переход изотопов уранорадиевого ряда в зерно некоторых сельскохозяйственных культур. Гигиена и санитария.1976. № 2. 58–61. [Mordberg E.L., Aleksandruk V.M., Kovygin G.V. et al. Perekhod izotopov uranoradievogo ryada v zerno nekotoryh sel’skohozyajstvennyh kul’tur. Gigiena i Sanitariya.1976;2:58–61. (In Russian).]
  46. Dragovic S., Mihailovic N., Gajic B. Quantification of transfer of U 238 , R 226 a, T 232 h, K 40 and C 137 s in mosses of a semi–natural ecosystem. J Environ. Radioact. 2010; 101:159–164.
  47. Popic J.M., Salbu B., Strand T., Skipperud L. Assessment of radionuclide and metal contamination in a thorium rich area in Norvey. J. Environ. Monit. 2011;13:1730–1738.
  48. Blanco Rodriguez M.P., Vera Tome F., Lozano J.C., Perez Fernandez M.A. Transfer of U 238 , T 230 h, R 226 a, and P 210 b from soils to tree and shrub species in a Mediterranean area. Appl. Radiat. Isotop. 2010;68:1154–1159.
  49. Hinton T.G., Knox A.S., Kaplan D.I., Sharitz R. Phytoextraction of uranium and thorium by native trees in a contaminated wetland. J. Radioanal. Nucl. Chem. 2005; 264(2):417–422.
  50. Tuovinen T.S., Kasurinen A., Häikiö E. et al. Transfer of elements relevant to nuclear fuel cycle from soil to boreal plants and animals in experimental meso- and microcosms. Sci. Total Environ. 2016;539:252–261.
  51. Ryan B., Martin P., Iles M. Uranium-series radionuclides in native fruits and vegetables of northern Australia. J. Radioanal. Nucl. Chem. 2005;264(2):407–412.
  52. Linsalata P., Morse R., Ford H. et al. An assessment of soil to plant concentration ratios for some natural analogues of transuranic elements. Health Phys. 1989;56:33–46.
  53. Мордберг Е.Л., Шевченко И.И., Шалаева М.Л., Блюмштейн В.М. Накопление естественных радионуклидов в картофеле, овощах и бахчевых. Гигиена и cанитария. 1977; 2:105–107. [Mordberg E.L., Shevchenko I.I., Shalaeva M.L., Blyumshtejn V.M. Nakoplenie estestvennyh radionuklidov v kartofele, ovoshchah i bahchevyh. Gigiena i Sanitariya. 1977;2:105–107. (In Russian).].
  54. Shayeb M.A., Alharbi T., Baloch M.A., Alsamhan O.A.R. Transfer factors for natural radioactivity into date palm pits. J. Environ. Radioact. 2017; 167:75–79.
  55. Pourcelot L., Masson O., Renaud P. et al. Environmental consequences of uranium atmospheric releases from fuel cycle facility: II. The atmospheric deposition of uranium and thorium on plants. J. Environ. Radioact. 2015;141:1–7.
  56. Sheppard S.C., Evenden W.G. Critical compilation and review of plant/soil concentration radios for uranium, thorium and lead. J. Environ. Radioact. 1988;8:255–285.
  57. Sheppard S.C., Evenden W.G. The assumption of linearity in soil and plant concentration ratio: an experimental evaluation. J. Environ. Radioact. 1988;7:22–47.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Comparative analysis of data on 232Th concentration ratios to agricultural plants.

下载 (227KB)
3. Fig. 2. Comparative analysis of data on 232Th concentration ratios to natural plants.

下载 (205KB)
4. Fig. 3: Variations of the concentration ratios of 232Th to natural grasses with concentrations of 232Th in the soil. The data of [36] for alfalfa and washed pasture grass are highlighted by the circles.

下载 (123KB)
5. Fig. 4. Variations of the concentration ratios of 232Th to mosses with concentrations of 232Th in the soil. A — all data, B — data from [37]

下载 (300KB)
6. Fig. 5. Variations of the concentration ratios of 232Th to vegetables and fruits with concentrations of 232Th in the soil.

下载 (177KB)

版权所有 © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».