Применение совместного спектра сингулярностей для анализа кооперативной динамики сложных систем

Обложка

Цитировать

Полный текст

Аннотация

Целью данной работы является обобщение на случай кооперативной динамики взаимодействующих систем метода максимумов модулей вейвлет-преобразования и введение в рассмотрение совместного спектра сингулярностей. Методом исследования является основанный на вейвлетах мультифрактальный формализм, обобщенная версия которого применяется для количественного описания эффекта синхронизации хаоса в динамике модельных систем. Рассматриваются модели связанных систем Рёсслера и парных нефронов. В результате проведенных исследований отмечены основные изменения совместных спектров сингулярностей при переходе от синхронных колебаний к несинхронным в первой модели и к режиму частичной синхронизации во второй. Заключение по итогам проведенного исследования: предложенный подход может найти применение в исследованиях кооперативной динамики систем различной природы.

Об авторах

Герман Александрович Гуйо

Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского

410012, Россия, Саратов, ул. Астраханская, 83

Алексей Николаевич Павлов

Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского

410012, Россия, Саратов, ул. Астраханская, 83

Список литературы

  1. Bendat JS, Piersol AG. Random Data: Analysis and Measurement Procedures. 4th edition. New Jersey: John Wiley & Sons; 2010. 640 p. doi: 10.1002/9781118032428.
  2. Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical Recipes: The Art of Scientific Computing. 3rd edition. Cambridge: Cambridge University Press; 2007. 1256 p.
  3. Halsey TC, Jensen MH, Kadanoff LP, Procaccia I, Shraiman BI. Fractal measures and their singularities: The characterization of strange sets. Phys. Rev. A. 1986;33(2):1141–1151. DOI: 10. 1103/PhysRevA.33.1141.
  4. Frish U, Parisi G. On the singularity structure of fully developed turbulence. In: Ghil M, Benzi R, Parisi G, editors. Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics. New York: North-Holland; 1985. P. 84–88.
  5. Benzi R, Vulpiani A. Multifractal approach to fully developed turbulence. Rendiconti Lincei. Scienze Fisiche e Naturali. 2022;33(3):471–477. doi: 10.1007/s12210-022-01078-5.
  6. Muzy JF, Bacry E, Arneodo A. Wavelets and multifractal formalism for singular signals: Application to turbulence data. Phys. Rev. Lett. 1991;67(25):3515–3518. DOI: 10.1103/ PhysRevLett.67.3515.
  7. Muzy JF, Bacry E, Arneodo A. The multifractal formalism revisited with wavelets. International Journal of Bifurcation and Chaos. 1994;4(2):245–302. doi: 10.1142/S0218127494000204.
  8. Kantelhardt JW, Zschiegner SA, Koscielny-Bunde E, Havlin S, Bunde A, Stanley HE. Multifractal detrended fluctuation analysis of nonstationary time series. Physica A: Statistical Mechanics and its Applications. 2002;316(1–4):87–114. doi: 10.1016/S0378-4371(02)01383-3.
  9. Ihlen EAF. Introduction to multifractal detrended fluctuation analysis in Matlab. Frontiers in Physiology. 2012;3:141. doi: 10.3389/fphys.2012.00141.
  10. Meneveau C, Sreenivasan KR, Kailasnath P, Fan MS. Joint multifractal measures: Theory and applications to turbulence. Phys. Rev. A. 1990;41(2):894–913. doi: 10.1103/PhysRevA.41.894.
  11. Ivanov PC, Amaral LAN, Goldberger AL, Havlin S, Rosenblum MG, Struzik ZR, Stanley HE. Multifractality in human heartbeat dynamics. Nature. 1999;399(6735):461–465. DOI: 10.1038/ 20924.
  12. Pavlov AN, Sosnovtseva OV, Ziganshin AR, Holstein-Rathlou NH, Mosekilde E. Multiscality in the dynamics of coupled chaotic systems. Physica A: Statistical Mechanics and its Applications. 2002;316(1–4):233–249. doi: 10.1016/S0378-4371(02)01202-5.
  13. Pavlov AN, Pavlova ON, Abdurashitov AS, Sindeeva OA, Semyachkina-Glushkovskaya OV, Kurths J. Characterizing scaling properties of complex signals with missed data segments using the multifractal analysis. Chaos. 2018;28(1):013124. doi: 10.1063/1.5009438.
  14. Addison PS. The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance. 2nd edition. Boca Raton: CRC Press; 2016. 464 p. doi: 10.1201/9781315372556.
  15. Barfred M, Mosekilde E, Holstein-Rathlou NH. Bifurcation analysis of nephron pressure and flow regulation. Chaos. 1996;6(3):280–287. doi: 10.1063/1.166175.
  16. Postnov DE, Sosnovtseva OV, Mosekilde E, Holstein-Rathlou NH. Cooperative phase dynamics in coupled nephrons. International Journal of Modern Physics B. 2001;15(23):3079–3098. doi: 10.1142/S0217979201007233.
  17. Sosnovtseva OV, Pavlov AN, Mosekilde E, Yip KP, Holstein-Rathlou NH, Marsh DJ. Synchronization among mechanisms of renal autoregulation is reduced in hypertensive rats. Am. J. Physiol. Renal. Physiol. 2007;293(5):F1545–F1555. doi: 10.1152/ajprenal.00054.2007.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах