On existence of multistability near the boundary of generalized synchronization in unidirectionally coupled systems with complex topology of attractor

Capa

Citar

Texto integral

Resumo

Aim of this work is to study the possibility of existence of multistability near the boundary of generalized synchronization in systems with complex attractor topology. Unidirectionally coupled Lorentz systems have been chosen as an object of study, and a modified auxiliary system method has been used to detect the presence of the synchronous regime. Result of the work is a proof of the presence of multistability near the boundary of generalized synchronization in unidirectionally coupled systems with a complex topology of attractor. For this purpose, the basins of attraction of the synchronous and asynchronous states of interacting Lorenz systems have been obtained for the value of the coupling parameter corresponding to the realization of the intermittent generalized synchronization regime in the system under study, and the dependence of the multistability measure on the value of the coupling parameter has also been calculated. It is shown that in the regime of intermittent generalized synchronization the measure of multistability turns out to be positive, which is an additional confirmation of the presence of multistability in this case.

Sobre autores

Olga Moskalenko

Saratov State University

ul. Astrakhanskaya, 83, Saratov, 410012, Russia

Evgeniy Evstifeev

Saratov State University

ul. Astrakhanskaya, 83, Saratov, 410012, Russia

Bibliografia

  1. Pisarchik A. N., Feudel U. Control of multistability // Physics Reports. 2014. Vol. 540, no. 4. P. 167-218. doi: 10.1016/j.physrep.2014.02.007.
  2. Attneave F. Multistability in perception // Sci. Am. 1971. Vol. 225, no. 6. P. 63-71. DOI: 10.1038/ scientificamerican1271-62.
  3. Безручко Б. П., Селезнев Е. П., Смирнов Е. В. Эволюция бассейнов притяжения аттракторов симметрично связанных систем с удвоением периода // Письма в ЖТФ. 1995. Т. 21, № 8. С. 12-17.
  4. Eschenazi E., Solari H. G., Gilmore R. Basins of attraction in driven dynamical systems // Phys. Rev. A. 1989. Vol. 39, no. 5. P. 2609-2627. doi: 10.1103/PhysRevA.39.2609.
  5. Moreno-Bote R., Rinzel J., Rubin N. Noise-induced alternations in an attractor network model of perceptual bistability // Journal of Neurophysiology. 2007. Vol. 98, no. 3. P. 1125-1139. doi: 10.1152/jn.00116.2007.
  6. Feudel U. Complex dynamics in multistable systems // International Journal of Bifurcation and Chaos. 2008. Vol. 18, no. 6. P. 1607-1626. doi: 10.1142/S0218127408021233.
  7. Поздняков М. В., Савин А. В. Особенности мультистабильных режимов несимметрично связанных логистических отображений // Известия вузов. ПНД. 2010. Т. 18, № 5. С. 44-53. doi: 10.18500/0869-6632-2010-18-5-44-53.
  8. Postnov D. E., Vadivasova T. E., Sosnovtseva O. V., Balanov A. G., Anishchenko V. S., Mosekilde E. Role of multistability in the transition to chaotic phase synchronization // Chaos. 1999. Vol. 9, no. 1. P. 227-232. doi: 10.1063/1.166394.
  9. Carvalho R., Fernandez B., Vilela Mendes R. From synchronization to multistability in two coupled quadratic maps // Phys. Lett. A. 2001. Vol. 285, no. 5-6. P. 327-338. doi: 10.1016/S0375- 9601(01)00370-X.
  10. Astakhov V., Shabunin A., Uhm W., Kim S. Multistability formation and synchronization loss in coupled Henon maps: Two sides of the single bifurcational mechanism // Phys. Rev. E. 2001. Vol. 63, no. 5. P. 056212. doi: 10.1103/PhysRevE.63.056212.
  11. Pikovsky A., Popovych O., Maistrenko Y. Resolving clusters in chaotic ensembles of globally coupled identical oscillators // Phys. Rev. Lett. 2001. Vol. 87, no. 4. P. 044102. DOI: 10.1103/ PhysRevLett.87.044102.
  12. Campos-Mej´ıa A., Pisarchik A. N., Arroyo-Almanza D. A. Noise-induced on-off intermittency in mutually coupled semiconductor lasers // Chaos, Solitons & Fractals. 2013. Vol. 54. P. 96-100. doi: 10.1016/j.chaos.2013.06.006.
  13. Rulkov N. F., Sushchik M. M., Tsimring L. S., Abarbanel H. D. I. Generalized synchronization of chaos in directionally coupled chaotic systems // Phys. Rev. E. 1995. Vol. 51, no. 2. P. 980-994. doi: 10.1103/PhysRevE.51.980.
  14. Koronovskii A. A., Moskalenko O. I., Hramov A. E. Nearest neighbors, phase tubes, and generalized synchronization // Phys. Rev. E. 2011. Vol. 84, no. 3. P. 037201. doi: 10.1103/PhysRevE.84.037201.
  15. Moskalenko O. I., Koronovskii A. A., Hramov A. E., Boccaletti S. Generalized synchronization in mutually coupled oscillators and complex networks // Phys. Rev. E. 2012. Vol. 86, no. 3. P. 036216. doi: 10.1103/PhysRevE.86.036216.
  16. Hramov A. E., Koronovskii A. A. Intermittent generalized synchronization in unidirectionally coupled chaotic oscillators // Europhys. Lett. 2005. Vol. 70, no. 2. P. 169-175. doi: 10.1209/epl/ i2004-10488-6.
  17. Koronovskii A. A., Moskalenko O. I., Pivovarov A. A., Evstifeev E. V. Intermittent route to generalized synchronization in bidirectionally coupled chaotic oscillators // Chaos. 2020. Vol. 30, no. 8. P. 083133. doi: 10.1063/5.0007156.
  18. Москаленко О. И., Короновский А. А., Ханадеев В. А. Метод выделения характерных фаз поведения в системах со сложной топологией аттрактора, находящихся вблизи границы обобщенной синхронизации // Известия вузов. ПНД. 2020. Т. 28, № 3. С. 274-281. doi: 10.18500/0869-6632-2020-28-3-274-281.
  19. Koronovskii A. A., Moskalenko O. I., Pivovarov A. A., Khanadeev V. A., Hramov A. E., Pisarchik A. N. Jump intermittency as a second type of transition to and from generalized synchronization // Phys. Rev. E. 2020. Vol. 102, no. 1. P. 012205. doi: 10.1103/PhysRevE.102.012205.
  20. Moskalenko O. I., Koronovskii A. A., Selskii A. O., Evstifeev E. V. On multistability near the boundary of generalized synchronization in unidirectionally coupled chaotic systems // Chaos. 2021. Vol. 31, no. 8. P. 083106. doi: 10.1063/5.0055302.
  21. Москаленко О. И., Короновский А. А., Сельский А. О., Евстифеев Е. В. Метод определения характеристик перемежающейся обобщенной синхронизации, основанный на вычислении вероятности наблюдения синхронного режима // Письма в ЖТФ. 2022. Т. 48, № 2. С. 3-6. doi: 10.21883/PJTF.2022.02.51910.18985.
  22. Zheng Z., Wang X., Cross M. C. Transitions from partial to complete generalized synchronizations in bidirectionally coupled chaotic oscillators // Phys. Rev. E. 2002. Vol. 65, no. 5. P. 056211. doi: 10.1103/PhysRevE.65.056211.
  23. Abarbanel H. D. I., Rulkov N. F., Sushchik M. M. Generalized synchronization of chaos: The auxiliary system approach // Phys. Rev. E. 1996. Vol. 53, no. 5. P. 4528-4535. 10.1103/ PhysRevE.53.4528.

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies