On the typicity of the explosive synchronization phenomenon in oscillator networks with the link topology of the “ring” and “small world” types
- Authors: Koronovskii A.A.1, Kurovskaya M.K.1, Moskalenko O.I.1
-
Affiliations:
- Saratov State University
- Issue: Vol 31, No 1 (2023)
- Pages: 32-44
- Section: Articles
- URL: https://journals.rcsi.science/0869-6632/article/view/250934
- DOI: https://doi.org/10.18500/0869-6632-003027
- EDN: https://elibrary.ru/ABUBJC
- ID: 250934
Cite item
Full Text
Abstract
About the authors
Aleksei Aleksandrovich Koronovskii
Saratov State Universityul. Astrakhanskaya, 83, Saratov, 410012, Russia
Maria Konstantinovna Kurovskaya
Saratov State Universityul. Astrakhanskaya, 83, Saratov, 410012, Russia
Olga Igorevna Moskalenko
Saratov State Universityul. Astrakhanskaya, 83, Saratov, 410012, Russia
References
- Boccaletti S., Latora V., Moreno V., Chavez M., Hwang D.-U. Complex networks: Structure and dynamics // Physics Reports. 2006. Vol. 424, no. 4–5. P. 175–308. doi: 10.1016/j.physrep. 2005.10.009.
- Arenas A., Diaz-Guilera A., Kurths J., Moreno Y., Zhou C. Synchronization in complex networks // Physics Reports. 2008. Vol. 469, no. 3. P. 93–153. doi: 10.1016/j.physrep.2008.09.002.
- Boccaletti S., Almendral J. A., Guan S., Leyva I., Liu Z., Sendina-Nadal I., Wang Z., Zou Y. Explosive transitions in complex networks’ structure and dynamics: Percolation and synchronization // Physics Reports. 2016. Vol. 660. P. 1–94. doi: 10.1016/j.physrep.2016.10.004.
- Leyva I., Sevilla-Escoboza R., Buldu J. M., Sendina-Nadal I., Gomez-Gardenes J., Arenas A., Moreno Y., Gomez S., Jaimes-Reategui R., Boccaletti S. Explosive first-order transition to synchrony in networked chaotic oscillators // Phys. Rev. Lett. 2012. Vol. 108, no. 16. P. 168702. doi: 10.1103/PhysRevLett.108.168702.
- Leyva I., Navas A., Sendina-Nadal I., Almendral J. A., Buldu J. M., Zanin M., Papo D., Boccaletti S. Explosive transitions to synchronization in networks of phase oscillators // Scientific Reports. 2013. Vol. 3. P. 1281. doi: 10.1038/srep01281.
- Gomez-Gardenes J., Gomez S., Arenas A., Moreno Y. Explosive synchronization transitions in scalefree networks // Phys. Rev. Lett. 2011. Vol. 106, no. 12. P. 128701. doi: 10.1103/PhysRevLett. 106.128701.
- Пиковский А., Розенблюм М., Куртс Ю. Синхронизация: Фундаментальное нелинейное явление. М.: Техносфера, 2003. 496 c.
- Анищенко В. С., Вадивасова Т. Е. Взаимосвязь частотных и фазовых характеристик хаоса. Два критерия синхронизации // Радиотехника и электроника. 2004. Т. 49, № 1. С. 77–83.
- Pazo D. Thermodynamic limit of the first-order phase transition in the Kuramoto model // Phys. Rev. E. 2005. Vol. 72, no. 4. P. 046211. doi: 10.1103/PhysRevE.72.046211.
- Koronovskii A. A., Kurovskaya M. K., Moskalenko O. I., Hramov A., Boccaletti S. Self-similarity in explosive synchronization of complex networks // Phys. Rev. E. 2017. Vol. 96, no. 6. P. 062312. doi: 10.1103/PhysRevE.96.062312.
- Peron T. K. D. M., Rodrigues F. A. Determination of the critical coupling of explosive synchronization transitions in scale-free networks by mean-field approximations // Phys. Rev. E. 2012. Vol. 86, no. 5. P. 056108. doi: 10.1103/PhysRevE.86.056108.
- Zou Y., Pereira T., Small M., Liu Z., Kurths J. Basin of attraction determines hysteresis in explosive synchronization // Phys. Rev. Lett. 2014. Vol. 112, no. 11. P. 114102. 10.1103/PhysRevLett. 112.114102.
- Короновский А. А., Куровская М. К., Москаленко О. И. О возможности явления взрывной синхронизации в сетях малого мира // Известия вузов. ПНД. 2021. Т. 29, № 4. С. 467–479. doi: 10.18500/0869-6632-2021-29-4-467-479.
- Zhu L., Tian L., Shi D. Criterion for the emergence of explosive synchronization transitions in networks of phase oscillators // Phys. Rev. E. 2013. Vol. 88, no. 4. P. 042921. DOI: 10.1103/ PhysRevE.88.042921.
- Peron T. K. D. M., Rodrigues F. A. Explosive synchronization enhanced by time-delayed coupling // Phys. Rev. E. 2012. Vol. 86, no. 1. P. 016102. doi: 10.1103/PhysRevE.86.016102.
- Leyva I., Sendina-Nadal I., Almendral J. A., Navas A., Olmi S., Boccaletti S. Explosive synchronization in weighted complex networks // Phys. Rev. E. 2013. Vol. 88, no. 4. P. 042808. DOI: 10.1103/ PhysRevE.88.042808.
- Jiang X., Li M., Zheng Z., Ma Y., Ma L. Effect of externality in multiplex networks on one-layer synchronization // Journal of the Korean Physical Society. 2015. Vol. 66, no. 11. P. 1777–1782. doi: 10.3938/jkps.66.1777.
- Su G., Ruan Z., Guan S., Liu Z. Explosive synchronization on co-evolving networks // EPL (Europhysics Letters). 2013. Vol. 103, no. 4. P. 48004. doi: 10.1209/0295-5075/103/48004.
- Hu X., Boccaletti S., Huang W., Zhang X., Liu Z., Guan S., Lai C.-H. Exact solution for first-order synchronization transition in a generalized Kuramoto model // Scientific Reports. 2014. Vol. 4, no. 1. P. 7262. doi: 10.1038/srep07262.
- Kuramoto Y. Self-entrainment of a population of coupled non-linear oscillators // In: Araki H. (eds) International Symposium on Mathematical Problems in Theoretical Physics. Vol. 39 of Lecture Notes in Physics. Berlin, Heidelberg: Springer, 1975. P. 420–422. doi: 10.1007/BFb0013365.
- Acebron J. A., Bonilla L. L., Perez-Vicente C. J., Ritort F., Spigler R. The Kuramoto model: A simple paradigm for synchronization phenomena // Rev. Mod. Phys. 2005. Vol. 77, no. 1. P. 137–185. doi: 10.1103/RevModPhys.77.137.
- Watts D. J., Strogatz S. H. Collective dynamics of ‘small-world’ networks // Nature. 1998. Vol. 393, no. 6684. P. 440–442. doi: 10.1038/30918.
Supplementary files
