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Abstract. Purpose of this paper is to study the evolution of longitudinal strain waves in the walls of an annular channel filled
with a viscous incompressible fluid. The walls of the channel were represented as coaxial shells with fractional physical
nonlinearity. The viscosity of the fluid and its influence on the wave process was taken into account within the study.
Metods. The system of two evolutionary equations, which are generalized Schamel equations, was obtained by the two-
scale asymptotic expansion method. The fractional nonlinearity of the channel wall material leads to the necessity to use
a computational experiment to study the wave dynamics in them. The computational experiment was conducted based
on obtaining new difference schemes for the governing equations. These schemes are analogous to the Crank—Nicholson
scheme for modeling heat propagation. Results. Numerical simulation showed that over time, the velocity and amplitude
of the deformation waves remain unchanged, and the wave propagation direction concurs with the positive direction of the
longitudinal axis. The latter specifies that the velocity of the waves is supersonic. For a particular case, the coincidence of the
computational experiment with the exact solution is shown. This substantiates the adequacy of the proposed difference scheme
for the generalized Schamel equations. In addition, it was shown that solitary deformation waves in the channel walls are
solitons.
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Annomayus. [Jenvio TaHHOH CTaTbU ABISETCS UCCIIEIOBAHNE YBOTIOMHI MPOJOIBHBIX BOTH Je()OpPMAINH B CTEHKAX KOJIBIIEBOTO
KaHaJla, 3all0JJHEHHOTO BA3KOH HEC)KMMaeMOoH >KuAKocThI0. CTEHKH KaHaNa MPeACTaBIsUINCh KOAKCHATbHBIMU 000I0YKAMHI
¢ IpoOHOH (HU3UIECKOi HEMMHEHHOCThIO0. B X071 ncciIenoBaHus yYUTHIBAIACh BI3KOCTh JKUAKOCTH U €€ BIHSHHE Ha BOJTHOBOM
nporecc. Memoowi. Mcronb3yst METOA ABYXMACIITaOHBIX PAa3I0KEHUH MOMyUeHa pa3pelnaomas CHCTeMa ABYX 3BOTIOIMOHHBIX
yYpaBHEHHH, KOTOPBIE MPEACTABIAIOT c000i 0000meHHble ypaBHeHus Lllamens. [{poOHas HEMMHEHHOCTh MaTepuaa CTEHOK
KaHaJla IPHBOAUT K HEOOXOAUMOCTH HCIOIb30BAHHS BEIYMCIHTENLHOTO SKCIIEPUMEHTA AT UCCIIEA0BaHHUS BOITHOBON THHAMHUKI
B HUX. BBIUMCIMTEIBHBIN OKCHECPHUMCHT MPOBOAUJICA HAa OCHOBC NOJIYUYCHUA HOBBIX PA3HOCTHBIX CXEM JIsI CUCTEMBbI DBOJIIO-
IIMOHHBIX YPaBHEHUH. DTH CXeMbl IOJIy4eHbI C UCIOJIB30BaHUEM TeXHUKH Oa3uca I'péOHepa u aHamornuHs! cxeme Kpanka—
HuxkoscoHa [y1st MOIeTMPOBaHUsI pacIpoCTpaHeHus Temna. Pesyiomamst. UncaeHHOE MOJEIUPOBAHKE TT0KA3aJI0, YTO CKOPOCTh
W aMIUIUTYAa BOJIH JeOopMalny OCTAIOTCS HEN3MEHHBIMHU, a HallpaBJIEHHE PaclpOCTPaHEHHsS BOJH COBIAAACT C MOJIOXH-
TEJBHBIM HallpaBJIeHHEM NpoNoiIbHOH ocH. [locienHee yka3pBaeT Ha TO, YTO CKOPOCTH BOJIH CBEpX3BYKoBas. J{i1sg yacTHOro
Cllydasi IOKa3aHO COBIA/ICHHE BBIYMCIIUTEIBHOTO SKCIIEPUMEHTA C TOYHBIM pellleHHeM. DTO 00O0CHOBEIBACT a/IeKBaTHOCTh
NIPEIUTOKEHHON PAa3HOCTHOI cXeMblI Juist 00001meHHbIX ypaBHeHui [lamens. Kpome Toro, mokaszaHo, 4To yeAMHEHHBIE BOJIHEI
nedopManuy B CTEHKaX KaHalla SIBISIOTCS COJUTOHAMHU.

Knroueesvie cnosa: BonHoBas JWUHaMHKa, KOJIBIICBOM KaHall, BA3Kas KUJIKOCTb, L[pO6Ha$[ HeIIPIHefIHOCTL, BBIYUCIUTEIIbHEIN
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Introduction

The wave technologies of nondestructive testing are increasingly being used in different industries,
for example, for pipeline diagnostics. Papers [1-5] are devoted to various aspects of wave propagation
in rods, plates and shells. In the above papers, the effect on the wave process in the shell of a viscous
liquid located inside it was not studied. The shell-fluid interaction was studied in [6] outside the
consideration of wave processes. On the other hand, in [7] the wave process in an annular channel is
studied considering the fluid inertia forces and cubic nonlinearity of shells forming the channel. In the
cases of shells containing a viscous fluid, the use of qualitative analysis methods for the analytical study
of nonlinear models for deformation waves causes significant difficulties [7-9]. Consequently, for these
cases it is necessary to carry out computational experiments [10]. In our study, the system of governing
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equations for wave processes in two cylindrical shells forming an annular channel are obtained by the
perturbations’ method with respect to a small parameter of the problem, as well as considering the
fractional physical nonlinearity of the shell material. This system is two generalized Schamel equations
and allows us to estimate the wiggle of dissipative properties of the fluid on longitudinal strain waves in
the channel walls. For a particular case, an exact solution of this system is found, for the general case,
difference schemes are developed, and its numerical solution is performed.

1. Mathematical statement of the problem

Let us consider an annular channel formed by two cylindrical shells. Further in the paper we
denote by the index ¢ = 1 the parameters for the outer shell and ¢ = 2 the parameters for the inner
shell. We assume that the Cartesian coordinate system xyz associated with the channel symmetry axis
and the corresponding cylindrical coordinate system r0x are introduced. The x-axis coincides with the
symmetry axis and the z-axis is directed along the normal to the unperturbed middle surface of the
shells. For the shells material, relationship between the stress and strain tensors, as well as deformation
intensity in the frames of the plasticity theory of A. A. Ilyushin [11,12] is

; i i )3
ol :E(MOE((;) +8(x)> [1"'5;)27];} /(1= u5),

o) = B (sg) I Mogg)> [1 - eff)ég /(1 —u),

(1)
) =2 (r (07 + 202) — paelfe)* /3,

1 o 1 2u0
)
3 (1—po)? 3 (1—pp)?

here pg is the shell material Poisson’s ratio, F is the shell material Young’s modulus, m is the constant
determined from tensile-compression experiments [13], 0, O are the normal stresses along the « and 0
axes; €., €¢ are the tensile-compression strains along the = and 0 axes; ¢, is the strain intensity. Note
that the relation of stresses o,, 0g with strains ¢, g and strain intensity ,, on the basis of the physical
law with nonlinearity in the form of power function with a fractional value of the exponent for the case
of incompressible material, i.e. when po = 1/2, is considered in [5, 14].

The relationship between the components of the strain tensor and ¢-th shell displacements has
the form

oUu @ 2w (@

(1) — _
cz Ox Tor?
(9 _ w W t hL < - < hL
€ = TR0 —ZR(Z.)Q at — 5 <z < 5

Here z is the local coordinate along the axis normal to the shell middle surface (z = 0 corresponds to
the shell middle surface), z is coordinate along the longitudinal axis of the shell median surface, W)
is the deflection of the ¢-th shell, the positive direction of which is taken to the shell curvature center,
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U @ is the longitudinal displacement of i-th shell, R(®) is the median surface radius of the i-th shell,
h") is the i-th shell thickness.

The asymptotic analysis carried out in [7] showed that the intensity of deformations in (1), (2)
can be considered on the middle surface (z = 0) for longitudinal waves. Consequently, forces acting on
the element of the shell middle surface are determined by the formulas

h /2

(4) i i
N = / ol dz — Lo o _ MOW(,) X
—h{ /2
1
iam(2 3 U . W\ . au® wo |
E\yv3) |"M\\ oz RO s RO | |
3)
h(()i)/g () (i) ()
@) @, _ Ehg out Wt
No™ = / % =12 <“° or RO )~
—h{ /2
1
ram(2 3 aU ) 2+ W\ L, 200w !
E\v3) |"M\\ oz RO s RO | )
and the moment is defined as
n /2 ‘
. . ER3 92w (@) w®
(1) — (1) - _ 0
M, / 0, zdz 2(1-12) ( 922 +u0R(i)2 , (4)
—h{ /2
We write the dynamics equations for the i-th shell
= Pohyg 5 9 )
Oox ot R
, (5
"oz o aw ) T gpaNe = eoh’ g~ () o

Here p(()i) is the ¢-th shell material density, qc(f), qn, are the shear and normal fluid stresses; r, x are the
cylindrical coordinates, ¢ is the time.

Substituting (3), (4) into the shell dynamics equations, we obtain the equations in displacements

() . . 1 . . A\ 2
Ehy’ 0 oU B w @ Lm 2\2 [3(](2) B W(l)] U @ N
1—uw2ox\ oz  "RO TE\3 or MR M\ Tar
2 T
w@ oU® W (i) 92U ,
— . — g
+ (R(l) ) + w2 8.’1) R(Z) — pOhO 8t2 |:Qx :|R(i) 3
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2. Analysis of equations for shells containing fluid by perturbation method

To analyze the wave process in the channel walls, we consider a dimensionless axisymmetric
problem and choose small parameters of the problem. Namely, we assume

w = wmuéi)7 U@ = umugi), Tzt = %,
Y = Cﬁt * L =h — M (7)
- 1 r _R(Z)a Wm = No, um_R(z)’
here ¢g = \/E/(po(1 — u3)) is the sound velocity in the shell, [ is the wavelength, wu,,, wy, are the
characteristic values of elastic shells displacements. Let us make the following assumptions
30 R()? -
0k, = (;)7 Um _ 0(1),
R® [2 30
Uy, R®) m " ®
70 " 1), £ =00Q),
0

here ¢ is the small parameter.
The method of two-scale expansions is applied and the dependent variables as an asymptotic
expansion are represented

) =g +erul) + . u) =)+ eruf) 4+ ©)

Independent variables are introduced in the form of

E=at —\/1— ', T=cott, (10)

Here T is the slow time.
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Substituting (7)-(10) into (5) in the zeroth approximation by ¢ gives

(i) au(fg 82u§1) Ousg 62u(12 . (an

Uzg = Wo 6% 5 8E2 — Wo 8% :( _M(Q)) 88’2

Thus ugzg is an arbitrary function. Then the system of equations in the next approximation with
account (11) is we obtain in the form of

1
62u(i) m [ 2 > 3 1 8u(i) 2 82u(i) 2./1—u? 84u(i)
1+<> T /1 -2 (M1+M2M0+M1M(2))4 10 10 , Mo Mo @ U1p _

9ot | E HE2 2 ol

1 l . 10 (—1)i_1q
= 5 3 (i) (q;)) - MOS4M - (12)
21— 2 5290h0 0(2) R()
(%)
The obtained Eqs. (12) are the generalized Schamel equations for 83;;’ . If the fluid is excluded,
we will have two homogeneous uncoupled Schamel equations. To determine fluid stresses in Egs. (12)
it is required to study the fluid motion in the channel.

3. Determination of stresses acting on the shell from the liquid

Two coaxial infinitely long shells forming an annular channel with a viscous fluid whose density
is constant are considered. The width of the slot occupied by the liquid 6 = R; — Ro, where R; is the
inner surface radius of the outer shell and R is the outer surface radius of the inner shell. The fluid
motion equations of creeping flow for the problem under consideration have the following form [15]

18pv<82‘/} 10V, | &V, w)

por orz " r or ox?  r?
pﬁx_v<0r2 o T 03@2)’
10 oV,

rar TV + gy =0

At the boundary of the shells and the liquid, the no-slip conditions of the liquid are satisfied [15]

0 (0
U W

= — R —Ww®
ETRE ” B at r=R; — WY, 14)

here r, x is the cylindrical coordinates, V,, V,. are fluid velocity projections on the coordinate axis, p is

the fluid pressure; p is the fluid density, v is the kinematic coefficient of fluid viscosity.

The fluid stresses qg(f) and ¢,, are determined at r = R(?)

17 vV, oV,
Gn=—P+2V 5", qg&):—pv(ar + ax) (15)
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Dimensionless variables and parameters are introduced

(i) €0 ., r—R® o ., T pvcolh(i)

Vo =0 20, Vo= b D, 1 = L= =T o YO p
l 5 5 l z 53 a16)
_ % _ 4 k—ﬁ—% hg)_ ﬁ_g d_.3 Re—§%—
V=R T AT T g Te T TEh pTen Re=goEE

The variables (16) are substituted into Eqgs. (13), (14), (15), and the following decompositions
P=P'te2P 4., vT:vS—i-E%vi%-..., vx:vg—keévi—k... (17)

are taken into account. After that, for the first terms of expansion (17) are obtained dynamics equations
of the thin fluid layer for creeping flow [7,15]

Jol PO 2,0 0 0
0 0, 0 :8%’ 8v$+8vr:0 (18)
or* dx*  Or*2’  Qx*  Or*
with boundary conditions
gulH . ou'? .
v?z—atg*, v) =0atr* =1, vB:—at?’*, v)=0atr* =0 (19)
as well as with the accuracy to 1, £3 from (15) are obtained, too
h(l)co OvV* . h(2)co ov0* N pvcolh(i)
gtV ~ —pv 062 87‘*36 at =1, ¢?~ PV at =0, g~ -3 — 0_po.

(20)

Solving the problem (18), (19) we obtain

o oull oY P2u? 92,V
0 __ 3 3 * * z _ x2 % 3 3 *
P= 12/ [/ ( o o )| g =6 (= )/ oz arr )

21

Bearing in mind (9), the new variables &, T (10) and with the accuracy to £2 we write (21) as

PO = 12,/1 3 / (ulf) — ulf)) e, gjj?f —6/1— (@ 1) (ufd — i), @

and then

oP° 2@
oe =124/1 — ug (u30 — u30> , -
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0
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Given that according (11) uézo p,oaul / J% submiting (22), (23) into (20) and assuming
R = R = R, h(()l) = h(()z) = hg due to smallness 1, A the right-hand side of the first equation
(i = 1) of system (12) was obtained as

_ez PV <R>3 oug _ duig) 24)
"0 00h0 Rege \8) \ 08 o )
and the right-hand side of the second equation (i = 2) of system (12) was obtained in the form of
62 pl v <R>3 Gu%) B 8ug ) 25)
"Opoho Reget \0) \ 08 T o )

4. Governing equations of deformation waves

Taking into account the found right-hand parts of Egs. (24) and (25), the system of Eqs. (12) is
rewritten as

1
8%%) m3 2 \2 1 aulD\2 924 uzy/1 —u2 )
mo o2 2\ 4 10 10 0 0 10 _
5o T B ug (\/§> (1 + papo + wiug) 5t R 5 5l

gl v (BY (0w 0wl
¥ p0ho Rege \ & OE og |’

2
Ou go)> 0%ul 10 V — Uo 84“&0) _

(Ml + Malo + Mlug) : ( OE OE2 2 &t

gl v (BN (o duig
O p0ho Rege \ & OE O&

1

82u§0) m3 5[ 22
geor T EaV! W ()

(26)
The following notations are introduced

duly 08 = c30D,  duy) JE = c30?, m=ciE t= o,

vV 3
ST L <2C2/ <u3\/1 —u3>> :
P02 ¢yt 27)

E 4

cam 3@(2/\/5)% (Ml + U2lo + Mlug)

Considering (27) in (26) the system of governing equations for the study of longitudinal
deformation waves in the walls of the annular channel is obtained

S

dpW) R A RO
o OO T+ T el e =0,

I 196®  §3¢p®
qc;t +6¢ gn - (p +¢® - oM = 0.

(28)

Moecunesuyu JI. U., Ilonosa E. B.
372 W3Bectus By3os. [TH/, 2023, T. 31, Ne 3



System of Egs. (28) has exact partial solution

2

@) = 224 (1 4 chk (n—4kt)) ", (29)

4

M=

but the general case requires a numerical solution to this system. By implementing a numerical solution
to equations (28), the initial conditions at ¢ = ( in the form of solutions (29) can be used

25 _
e (0,m) = @ (0,m) = R+ chikn) 72 (30)

or

25 _
oM (0,m) = (1 chkm) ™2, @2 (0,m) = 0. 31)

5. Computational experiment results

The computational experiment was carried out similarly to [7], but taking into account the
fractional nonlinearity. The desired difference scheme for the numerical solution of the system of
equations (28) was obtained using the Grobner basis technique in the Maple computer algebra system.
The resulting difference scheme is similar to the Crank—Nicholson scheme for the heat equation [16]
and has the form

3/2 nt1 50 n+1 : :
u(l);LJrl _ " ) (u(1)3/2 ;:_1 _ (P2 ;L_l)—k(u(l)d/2 ?—&-1 — u?? ;L_l>

J
T + 4h
(uu) ;j,j —9u® ;?111 1 ouM ;Lfll _ u<1>;?_+21) (uu) P —2uM oM u(l)f_2>
4h3 + Ah3
u(l)}?“ +u®? @ ;L“ +u®7
* 2 a 2 =0

u(g) ?—i-l . U(Q);L (u(2)3/2 n+1 (2)3/2 n—H) i (u(2)3/2 n _ u(2)3/2 n )

+4 j+1 U j—1 j+1 j—1
T 4h

n+1 n+1 n+1 n+1 n n n n
(@7 —2u@ T +2u® 70 —u®@7)  (w@ - 2u@ ] 4 2@ —u® )

4h3 + 4h3

ne) ;?“ +u@? O ;?H +u®”

- - 0.
* > >

(32)
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Within this scheme, terms with fractional nonlinearity for the next time step are linearized as

8/2 _ 32 32, 32 12 1 1/2 3/2
Vkil_vkil / +V/ = (Vkérl_vk/ ) (Vk+1‘|’“k/+1 / +V/€)+Vk/ =

_ ( 1/2 1/2) Vk{i-l +Vk/2

/ 1/2
Vi1~ Vi 1/2 Ly 1/2 (Vk+1+vk+1

/2 B2 _ 9B/

~ (Vi41 — Vi) 5 5Vk

RORN

3 1/2 3/2
2vk/ Vk+1—§vk/ . (33)

Models (28), (30) and (28), (31) were numerically studied by using this difference scheme.
We consider the initial condition (30) with k£ = 0.2, the numerical simulation results of the wave process
are shown in Fig. 1.

According to Fig. 1, it can be seen that the waves propagate to the right without changing the
speed and amplitude (supersonic speed). The numerical solution coincides with the analytic solution (29).
Then the initial conditions (31) are consider with £ = 0.2 and the calculation results are shown in Fig. 2.

According to Fig. 2, it can be seen that in the presence of a disturbance in the outer shell and its
absence in the inner shell at the initial moment of time, the wave amplitude in the outer shell decreases
with time, while in the opposing shell it increases. The wave amplitudes are equalized, which indicates
the transfer of energy through the liquid layer between the shells.

Let us consider the case when at the initial moment a perturbation is given in the form of two
waves (30) with different amplitudes and speeds assuming k£ = 0.225 for the first wave and k£ = 0.2 for
the second wave. The numerical simulation results are presented in Fig. 3.

(P(IJ (p(g)
0.0025 —1=0 0.0025 — =0
=36.22 1=36.22
— (=7245 —=T7245
0.0020 — 1=108.67 0.0020 — 1=108.67
0.0010 0.0010
0.0005 0.0005
0 0
40 20 0 20 40 o0 80 100 M 40 20 0 20 40 o0 80 100 M
Fig. 1. Results of numerical solution of equations (28) with initial conditions (30) (color online)
(p(l) (Pm
0.0025 0.0025 — =0
1=36.23
—_1=7245
0.0020 0.0020 10868
0.0015 0.0015 nll
0.0010 0.0010 \
0.0005 0.0005
0 0
80 -60 40 20 0 20 40 60 M 80 -60 40 20 0 20 40 60 M

Fig. 2. Results of numerical solution of equations (28) with initial conditions (31) (color online)
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Fig. 3. Results of numerical solution of equations (28) with two initial conditions (30) for k=0.225 and k=0.2 (color online)

It follows from Fig. 3 that there is an elastic interaction of waves as particles. This means that
deformation waves are solitons.

Summary and conclusion

The numerical simulation of nonlinear wave process in the walls of an annular channel indicates
the need of accounting the presence of viscous fluid in the channel in the study of longitudinal
deformation waves propagation. Excitation of the strain wave in the outer shell at the initial moment of
time leads to the appearance of the strain wave in the opposite shell. In other words, energy transfer
from one shell to the other occurs via the liquid. This process is accompanied by a decrease in the
amplitude of the wave in the outer shell, which leads to a decrease in the rate of propagation of the
deformation wave in this shell. At the same time, the amplitude of the wave in the opposite shell
increases. Due to fluctuations in amplitudes and velocities, their amplitudes be come equal in cause of
time. In addition, for the case where a solitary strain wave is excited in each shell at the initial moment
of time, calculations have shown that these waves are solitons. The results obtained can be used for the
development of non-destructive methods of control of pipelines with viscous liquids used in devices,
machines and units, as well as the control of working processes.
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