Variations in chemical compositions of titanite group minerals from ore skarnes in the Ladoga Lake Region (South Karelia, Russia)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Titanite, aluminium- and fluorine-enriched titanite, tin-bearing titanite and malayaite from ore skarns in the Ladoga Lake region were studied. Composition of these minerals from skarns with W-Zn-Pb-Bi (Latvasyrja, Jokiranta) and Sn-Zn-Cu-Fe-In (Pitkäranta Mining District) mineralization, related genetically to S-type and А-type granites, was analyzed. For the first time for ore deposits and occurrences in Karelia, there was detected titanite enriched in aluminum (Al2O3 5—7 wt%) and fluorine (~3 %). Isomorphic substitutions in titanite from skarns with different metallogenic specialization were considered. It is shown that the following isomorphic schemes are realized for studied titanite: (Al, Fe)3+ + F ↔ Ti4+ + O2–; (Al, Fe)3+ + (OH) ↔ Ti4+ + O2–, where Al ≥ Fe (skarns with W-Zn-Pb-Bi mineralization); and Sn4+ ↔ Ti4+ (skarns with Sn-Cu-Fe-Zn-In mineralization). The Sn-bearing titanite from Sn-bearing skarns nearly in all cases contains Fe, what it seems due to the high Fe# in rapakivi granites (containing biotite and other mafic minerals with Fe# >0.9) and the associated post-magmatic mineralization (columbite-(Fe), synchysite-(Fe), marmatite). The formation of titanite enriched in aluminum and fluorine was controlled by protolith and fluid compositions rather than temperature and pressure (≤500 ◦C, ≤5 kbar). Crystallization of this titanite in Jokiranta ore occurrences took place during a post-ore-forming process, potentially capable to the remobilization of base-metals ores.

Full Text

Restricted Access

About the authors

V. I. Ivashchenko

Institute of Geology, Karelian Research Centre RAS

Author for correspondence.
Email: ivashche@krc.karelia.ru
Russian Federation, Petrozavodsk

References

  1. Alexandrov S. М. Geochemistry of skarn- and ore formation in dolomites. Moscow: Nauka, 1990. 334 p. (in Russian).
  2. Alexandrov S. М., Troneva М. А. Composition, mineral associations and genesis of titanite and malayite in skarns. Geochem. Int. 2007. N 10. P. 1100—1113.
  3. Avchenko О. V., Vakh А. S., Chudnenko K. V., Sharova О. I. Physico-chemical conditions of formation of Al-F sphene in ore-metasomatic rocks from the a beresite deposit. Geochem. Int. 2012. N 5. P. 453—469.
  4. Baltybaev Sh.K., Ovchinnikova G. V., Kuznetsov A. B., Vasilyeva I. M., Rizvanova N. G., Alekseev I. A., Kirillova P. A. Two stages of gold sulfide ores of early Proterozoic gabbroids in the Northern Ladoga area. Bull. Saint Petersburg University. Earth Sciences. 2021. Vol. 66 (3). P. 559—577 (in Russian).
  5. Bourdelle F. Low-temperature chlorite geothermometry and related recent analytical ad- vances: A Review. Minerals. 2021. Vol. 11(2). Paper 130.
  6. Dick L. A. A comparative study of the geology, mineralogy, and condition of formation of contact metasomaticmineral deposits in the Northeastern Canadian Cordillera. PhD thesis. Kingston, Ontario: Queen’s University, 1980. 478 p.
  7. Enami M., Susuki K., Liou J. G., Bird D. K. Al-Fe3+ and F-OH substitutions in titanite and constrains on their P–T dependence. Eur. J. Miner. 1993. Vol. 5. P. 219—231.
  8. Franz G., Spear F. Aluminous titanite (sphene) from the eclogite zome South-Central Tauern Window Austria. Chem. Geol. 1985. Vol. 50. N 1/3. P. 33—46.
  9. Furman G. Mineralogical description of some parts of Old and New Finland. Gorny zhurnal. 1828. Vol. II. P. 3—39 (in Russian).
  10. Gavrilenko V. V., Kalinicheva G. I. Geochemistry of tungsten mineralization in metamorphic and granitization provinces: case study of the northern Ladoga Lake region. Leningrad: Leningrad State University, 1991. 248 p. (in Russian).
  11. Giere R. Compositional variation of metasomatic titanite from Adamello (Italy). Schweiz. Mineral. Petrogr. 1992. Vol. 72. P. 167—177.
  12. Gogoi B., Saikia A., Ahmad M. Titanite-centered ocellar texture: A petrological tool to unravel the mechanism enhancing magma mixing. Periodico di Mineralogia. 2017. Vol. 86. P. 245—273.
  13. Grendal G. Pitkäranta (brief description of the Pitkäranta deposit, mines and plants). Saint Petersburg, 1896. 50 p. (in Russian).
  14. Hayden L. A., Watson E. B., Wark D. A. A thermobarometer for sphene (titanite). Contrib. Miner. Petrol. 2008. Vol. 155. P. 529—540.
  15. Harlov D., Tropper P., Seifert W., Nijland T., Förster H. J. Formation of Al-rich titanite (CaTiSiO4O–CaAlSiO4(OH)) reaction rims on ilmenite in metamorphic rocks as a function of fH2O and fO2. Lithos. 2006. Vol. 88. P. 72—84.
  16. Ivashchenko V. I. Skarn mineralization of tin and tungsten in the southern Baltic Shield: mineralogy, petrography and genesis. Leningrad: Nauka, 1987. 240 p. (in Russian).
  17. Ivashchenko V. I. Mineralogo-geochemical indicators of the ore specialization of skarns in the Pitkäranta Ore Province (South Karelia, Russia) for rare and noble metals. Zapiski RMO (Proc. Russian Miner. Soc). 2016. N 2. P. 74—95 (in Russian).
  18. Ivashchenko V. I. Rare-Metal (In, Bi, Te, Se, Be) Mineralization of skarn ores in the Pitkäranta mining district, Ladoga Karelia, Russia. Minerals. 2021. Vol. 11(2). Paper 124.
  19. Ivashchenko V. I. Geology, geochemistry and mineralogy of indium resources at Pitkäranta Mining District, Ladoga Karelia, Russia. J. Geochem. Exploration. 2022. Vol. 240. P. 107046.
  20. Ivashchenko V. I. Critical metals mineralization in the late-stage intrusions of Salmi Batholith, Ladoga Karelia, Russia. Minerals. 2023. Vol. 13. Paper 648.
  21. Ivashchenko V. I., Lavrov O. B. Ore deposits and occurrences in the North Ladoga region, Southwest Karelia. In: Field Trip Guidebook. 12th Quadrennial IAGOD Symposium “Understanding the genesis of ore deposits to meet the demands of the 21st century”. Moscow: “Science and Our Future” Foundation, 2006. P. 41—64.
  22. Khazov R. А. Geologicall features of tin mineralization in the northern Ladoga Lake region. Leningrad: Nauka, 1973. 87 p. (in Russian).
  23. Koistinen T. (Ed.) Precambrian basement of the Gulf of Finland and surrounding area 1:100 000. Espoo: Geological Survey of Finland, 1994.
  24. Kowallis B. J., Christiansen E. H., Dorais M. J., Winkel A., Henze P., Franzen L., Mosher H. Variation of Fe, Al, and F substitution in titanite (sphene). Geosciences. 2022. Vol. 12(6). P. 229.
  25. Larin А. М. Rapakivi granites and associated rocks. Saint Petersburg: Nauka, 2011. 402 p. (in Russian).
  26. Larin А. М., Amelin Y. V., Neimark L. А. Age and genesis of complex skarn ores from the Pitkäranta Ore Province. Geol. Ore Deposits. 1991. N 6. P. 15—33 (in Russian).
  27. Makarova G. V. Tungsten ore occurrences in the NW Ladoga Lake region, Karelian ASSR. In: Mineralogy and geochemistry of tungsten deposits. Leningrad: Leningrad State University, 1971. P. 205—207 (in Russian).
  28. Markl G., Piazolo S. Stability of high_Al titanite from low_pressure calcsilicates in light of fluid and host_rock composition. Amer. Miner. 1999. Vol. 84. P. 37—47.
  29. McLeod G.W., Dempster T., Faithfull J. W. Deciphering magma-mixing processes using zoned titanite from the Ross of Mull Granite, Scotland. J. Petrol. 2011. Vol. 52. N 1. P. 55—82.
  30. Mertanen S. Palaeo- and Mesoproterozoic dyke swarms in the Lake Ladoga area, NW Russia — palaeomagnetic studies. In: Dyke Swarms — Time Markers of Crustal Evolution. Hanski, Mertanen, Ramo & Vuoilo (eds). London: Taylor & Francis Group, 2006. P. 63—74.
  31. Mineral potential of the Republic of Karelia. Vol. 1. Ed by V. P. Mikhailov and V. N. Aminov. Petrozavodsk: Karelia Publ., 2005. 278 p. (in Russian).
  32. Moller P. Development and application of the Ga/Ge-geothermometer for sphalerite from sediment-hosted deposits. In: Monograph Series on Mineral Deposits 25. Berlin—Stuttgart: Gebruder Borntraeger, 1985. P. 15—30.
  33. Mulholland I. R. Malayaite and tin-bearing garnet from a skarn at Gumble, NSW, Australia. Miner Mag. 1984. Vol. 48, P. 27—30.
  34. Oberti R., Smith D. C., Rossi G., Caucia F. The crystalchemistry of high_aluminium titanites. Eur. J. Mineral. 1991. Vol. 3. P. 777—792.
  35. Palmunen M. K. Pitkäranta: Pitkä ranta vv. 1934—1938 suoritettujen vuoriteknillisten tutkimustenvalossa. Geologinen toimikunta. Geoteknillisiä julkaisuja. 1939. N 44. 154 p.
  36. Pan L.-C., Hu R.-Z., Bi X.-W., Li C., Wang X.-S., Zhu J.-J. Titanite major and trace element compositions as petrogenetic and metallogenic indicators of Mo ore deposits: Examples from four granite plutons in the southern Yidun arc, SW China. Amer. Miner. 2018. Vol. 103. P. 1417—1434.
  37. Perevoznikova Е. V., Miroshnichankoо N. V.. Tausonite and fluorine-alumious titanite in metamorphosed metalliferous sediments of the Triassic Sikhote Alin siliceous formation. Pacific Geol. 2009. Vol. 28. N 3. P. 101—105.
  38. Piccoli P., Candela P. Rivers M. Interpreting magmatic processes from accessory phases: titanite — a small-scale recorder of large-scale processes. Trans Royal Soc. Edinburgh: Earth Sci. 2000. Vol. 91. P. 257—267.
  39. Piuzana D., Castañeda C., Noce C. M., Soares A. C.P., Silva L. C. Titanite crystal chemistry and U-Pb isotopic data: a petrogenetic indicator for precambrian granitoid plutons of the Eastern Brazilian Shield. Geonomos. 2008. Vol. 16(1). P. 29—36.
  40. Proterozoic Ladoga Structure: geology, deep structure and mineralogeny. Ed. N. V. Sharov. Petrozavodsk: KarRC RAS, 2020. 435 p. (in Russian).
  41. René M. Titanite-ilmenite-magnetite phase relations in amphibolites of the Chýnov Area (Bohemian massif, Czech Republic). Acta Geodyn. Geomater. 2008. Vol. 5. N 3 (151). P. 239—246.
  42. Sahama Th. G. On the chemistry of the mineral titanite. C. R. Soe. Geol. Finlande. 1946. N 138. P. 88—120.
  43. Schwartz M. O., Rajah S. S., Askury A. K., Putthapiban P., Djaswadi S. The Southeast Asian Tin Belt. Earth-Science Reviews. 1995. Vol. 38. P. 95—293.
  44. Scibiorski E. A., Cawood P. A. Titanite as a petrogenetic indicator. Terra Nova. 2022. Vol. 34. P. 177—183.
  45. Sharova О. I., Chudnenko K. V., Avchenko О. V., Badredinov Z. G., Vakh А. S. Aliminous-fluorine sphene (titanite) as an indicator of the presence of fluorine in fluid. Doklady Earth Sci. 2012. Vol. 442. N 2. P. 250—253 (in Russian).
  46. Sobolev N. V., Shatsky V. S. Diamond inclusions in garnets from metamorphic rocks: a new environment for diamond formation. Nature. 1990. Vol. 343. P. 742—746.
  47. Spencer K. J., Hacker B. R., Kylander-Clark A.R.C., Andersen T. B., Cottle J. M., Stearns M. A., Poletti J. E., Seward G. G.E. Campaign-style titanite U–Pb dating by laser-ablation ICP: Implications for crustal flow, phase transformations and titanite closure. Chem. Geol. 2013. Vol. 341. P. 84—101.
  48. Svetov S. А., Stepanova А. V., Chazhengina S. Y. et al. High-precision (ICP-MS, LA-ICP-MS) analysis of rock and mineral composition: methods and precision assessment of results. Case study of Early Precambrian mafic complexes. Bull. KarRC RAS. 2015. N 7. P. 54—73 (in Russian).
  49. Takenouchi S. Hydrothermal synthesis and consideration of the genesis of malayaite. Miner. Deposita. 1971. Vol. 6. N 2. P. 335—347.
  50. Takenouchi S., Shoji T. The occurrence of malayaite in pyrometasomatic deposits of southwestern Japan. Mining Geol. 1969. Vol. 19. N 2. P. 172—174.
  51. Tararin I. А., Badredinov Z. G., Chubarov V. М., Sharova О. I. Grothite from garnet-mica crystalline schists of the Shikhta suite, Median Kamchatka Massif. Doklady Earth Sci. 2011. Vol. 438. N 6. P. 809—812 (in Russian).
  52. Troitzsch U., Ellis D. J. Thermodynamic properties and stability of Al-F-bearing titanite CaTiOSiO4 — CaAlFSiO4. Contrib. Miner. Petrol. 2002. Vol. 142. N 5. P. 543—563.
  53. Tropper P., Manning C. E. The current status of titanite-rutile thermobarometry in ultrahigh_pressure metamorphic rocks: The influence of titanite activity models on phase equilibrium calculations. Chem. Geol. 2008. Vol. 254. P. 123—132.
  54. Tropper P., Manning C. E., Essene E. J. The substitution of Al and F in titanite at high pressure and temperature: Experimental constraints on phase relations and solid solution properties. J. Petrol. 2002. Vol. 43. N 10. P. 1787—1814.
  55. Trüstedt O. Die Erzlagerstätten von Pitkäranta am Ladoga-See. Helsingfors, Frenckellska tryckeriaktiebolaget. Bulletin de la commision géologique de Finlande. 1907. N 19. 333 p.
  56. Vakh А. С., Avchenko О. V., Karabtsov А. А., Stepanov V. А. First find of grothite in gold deposits. Doklady Earth Sci. 2009. Vol. 428. N 3. P. 353—357 (in Russian).
  57. Xu L., Bi X., Hu R. Tang Y., Wang X., Xu Y. LA-ICP-MS mineral chemistry of titanite and the geological implications for exploration of porphyry Cu deposits in the Jinshajiang — Red River alkaline igneous belt, SW China. Miner Petrol. 2015. Vol. 109. P. 181—200.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Geological scheme of the northern Ladoga Lake region (after (Koistinen, 1994; Ivashchenko, Lavrov, 2006). 1 — post-Jotnian monzodolerites, ferrodolerites (Valaam sill); 2 — tuffs, sandstones, basaltic lava (Salmi suite); 3 — Salmi anorthosite-rapakivi granite batholite; 4 — late- and post-orogenic Svecofennian granitoids; 5 — early- and synorogenic gabbro-diorites, diorites; 6 — synorogenic granitoids and mignatites; 7 — early- and synorogenic gabbro, gabbro-norites, hornblendites, schriesheimites, pyroxenites (Kaalamo and Välimäki intrusives); 8, 9 — Ladoga series: 8 — mica schists, gneisses, 9 — phyllites, metaturbidites; 10 — graphitic schists; 11 — mafic metavolcanics (amphibolites), dolomites, marbles, skarns (Sortavala series); 12 — red-coloured dolomites, quartzites (Tulomozero suite); 13 — granite-gneiss, migmatites; 14 — skarn ore occurrences and deposits (а – tungsten, б — base-metal, в — Fe-Cu-Zn-Sn-In complex); 15 — structural lines of rock occurrence; 16 — shear zones and thrust zones. Numbers in circles indicate gneissose-granite domes: 1 — Latvasyrja, 2 — Savainijoki, 3 — Jokiranta, 4 — Sortavala, 5 — Kirjavolahti, 6 — Kokkoselkä, 7 — Impilahti, 8 — Mursula, 9 — Pitkäranta, 10 — Lyppiko, 11 — Kulismajoki. The study areas are shown in dotted lines: black line — Latvasyrja, red line — Jokiranta, yellow line — Pitkäranta.

Download (392KB)
3. Fig. 2. Scheme showing the geological structure of the Jokiranta-Latvasyrja skarn ore occurrences in the Ladoga Lake region, after (Makarova, 1971; Ivashchenko, 1987). 1 — post-orogenic leucogranites and pegmatoid granites; 2 — gneissose granites, migmatites, gneisses (rheomorphosed Archean basement); 3, 4 — early orogenic intrusions: 3 — plagiogranites, tonalites, 4 — gabbroic rocks, quartz diorites; 5 — diabases, gabbro-diabases, gabbro-amphibolites; 6, 7 — Ladoga series: 6 — quartzites, quartzitic sandstones, 7 — quartz-biotite schists, gneissose schists and migmatites derived from them; 8—11 — Sortavala series: 8 –- aposkarn quartz metasomatic rocks of the upper carbonate horizon, 9 — altered high-Mg, locally apomagnesian calcareous skarns (upper carbonate horizon), 10 — amphibolites, amphibole, biotite and graphite schists with skarned carbonate rock and apoalumosilicate skarn and skarnoid streaks, 11 — apomagnesian calcareous and altered high-Mg skarns (lower carbonate horizon); 12 — tectonic dislocations; 13 — tungsten and base-metal ore occurrences: а — in quartz-barite-fluorite veins; б — in apomagnesian calcareous skarns; в — in calcareous infiltration skarns and skarnoids; г — in altered high-Mg skarns. Arrows indicate titanite sampling sites.

Download (469KB)
4. Fig. 3. Typical modes of separation of titanite (а–в) and grothite (г–е) in altered skarns from Latvasyrja (а–в) and Jokiranta (г–е). BSE mages. Ab — albite, Ccp — chalcopyrite, Chl — chlorite, Di — diopside, Ep — epidote, Fsp –K-feldspar, Gro — Al- and F- enriched titanite, Mol — molybdenite, Pl — plagioclase, Prh — prehnite, Pyh — pyrrhotite, Qz — quartz, Rt — rutile, Sp –sphalerite, Ttn — titanite, Zn-Ms — zinc-bearing muscovite, Zo — zoisite.

Download (740KB)
5. Fig. 4. Scheme showing the geological structure of the northern and central Pitkäranta Mining District (after Trustedt, 1907; Larin et al., 1991, modified). 1 — basalts, dolerites (Salmi suite); 2—5 — granites in the Salmi anorthosite-rapakivi granite batholite: 2 — leucogranites and lithium-fluorine granites; 3 — fine-grained granites; 4 — medium-grained, porphyraceous biotite granites; 5 — porphyraceous amphibole-biotite granites; 6 — ceramic pegmatites; 7 — remobilized Archean gneissose granite dome (1 — Pitkäranta, 2 — Vinberg, 3 — Lypikko, 4 — Kulismajoki); 8 — Ladoga series: biotite-quartz-feldspar-biotite and graphite-bearing schists; 9 — Pitkäranta suite: amphibolites, amphibole, graphite and graphite-bearing schists, dolomitic and calcitic marbles and skarns derived from them; 10 — skarns, greisenized skarns and low-temperature metasomatic rocks derived from them with Fe-Cu-Zn-Sn mineralization; 11 — tectonic dislocations; 12 — projection on the modern erosion surface of the sharp bend of top of the Salmi Batholith (it also delineates the skarn (with Fe-Cu-Zn-Sn mineralization) distribution area. Kitelä, Valkealampi, Gerbertz-2 and Kulismajoki are deposits and occurrences containing ore with tin-bearing titanite and malayaite.

Download (225KB)
6. Fig. 5. Typical forms of separation of tin-bearing titanite in skarn ores from the Valkealampi deposit (а–в) and the Kulismajoki occurrence (г–е). BSE images. Act — actinolite, Amp — amphibole, Cst — cassiterite, Chl — chlorite, Di — diopside, Flr — fluorite, Ghn — gahnite, Mag — magnetite, Phl — phlogopite, Prg — pargasite, Ttn-Sn — tin-bearing titanite, Sp — sphalerite, Tr — tremolite.

Download (1MB)
7. Fig. 6. Typical forms of separation of tin-bearing titanite (а–г) and malayaite (д, е) in skarn ores from the Kitelä deposit. BSE images. Ab — albite, Act — actinolite, Cal — calcite, Ccp — chalcopyrite, Chl — chlorite, Di — diopside, Fprg — ferropargasite, Fsp — K-feldspar, Hd — hedenbergite, Ilm — ilmenite, Lo — löllingite, Mag — magnetite, Mly — malayaite, Mol — molybdenite, Qz — quartz, Ttn-Sn — tin-bearing titanite, Sp — sphalerite, Ttn — titanite.

Download (844KB)
8. Fig. 7. Fe versus Al in titanite of ore skarns from the northern Ladoga Lake region. 1—6 — deposits and occurrences: 1 — Jokiranta (Pb, Zn, W); 2 — Latvasyrja (W, Mo, Bi), 3 — Kitelä (Sn, Zn, Fe, Cu, In), 4 — Kulismajoki (Zn, Sn, Fe, Cu, In), 5 — Valkealampi (Fe, Zn, Cu, Sn, In), 6 — Herbertz-2 (Fe, Cu, Zn, Sn, In). I—III — titanite fields after (Kowallis et al., 2022): I — from Sn and W skarn deposits in Russia, Australia, Canada, Saudi Arabia, and the Czech Republic; II — from skarns in China; III — from Fe-Cu-Au skarns in China and Australia.

Download (102KB)
9. Fig. 8. Diagrams showing isomorphic substitutions in titanite from ore skarns in the northern Ladoga Lake region based on the scheme (Al, Fe)3+ + (F, OH)– ↔ Ti4+ + O2–. а — grothite and titanite from Jokiranta (1) and Latvasyrja (2) skarns; б — tin-bearing titanite from Kitelä (1), Valkealampi (2) and Kulismajoki (3) skarns. Only tin-bearing titanite with Sn < 0.2 apfu are shown on the diagram (б).

Download (77KB)
10. Fig. 9. Titanites in skarns from the Ladoga Lake region on the diagram CaTiSiO4O-CaAlSiO4F-CaAlSiO4(OH) (mol.%). 1, 2 — ore occurrences associated with post-orogenic granites (~1.8 Ga): 1 — Jokiranta, 2 — Latvasyrja; 3—6 — deposits associated with anorogenic granites from the Salmi anorthosite-rapakivi granite batholite (~1.54 Ga): 3 — Valkealampi, 4 — Kitelä, 5 — Kulismajoki, 6 — Klara.

Download (108KB)
11. Fig. 10. (Sn+Fe)–Ti (а) and (Sn+Fe+Al)–Ti (б) correlations in tin-bearing titanite from Pitkäranta mining district. 1 — Valkealampi, 2—3 — Kitelä: 2 — author’s own data, 3 — data (Alexandrov, 1990), 4 — Herbertz-2, 5 — Kulismajoki.

Download (107KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».