Acesso aberto Acesso aberto  Acesso é fechado Acesso está concedido  Acesso é fechado Somente assinantes

Volume 26, Nº 3 (2018)

Article

Isotopic (Sm–Nd, Pb–Pb, and δ34S) and Geochemical Characteristics of the Metasedimentary Rocks of the Baikal–Patom Belt (Northern Transbaikalia) and Evolution of the Sedimentary Basin in the Neoproterozoic

Chugaev A., Budyak A., Chernyshev I., Dubinina E., Gareev B., Shatagin K., Tarasova Y., Goryachev N., Skuzovatov S.

Resumo

This paper reports the results of a detailed isotopic (Sm–Nd, Pb–Pb, and δ34S) and geochemical studies of Neoproterozoic metasedimentary rocks from the Patom and Bodaibo domains of the Baikal–Patom belt (northern Transbaikalia). It was shown that the metasedimentary rocks of these domains are strongly variable in their geochemical and isotope geochemical characteristics. Regular variations in these characteristics were observed, and their correlation with the main stages of the evolution of the sedimentary paleobasin in the Neoproterozoic was established.

Petrology. 2018;26(3):213-245
pages 213-245 views

Specifics of the Neoarchean Plume–Lithospheric Processes in the Kola–Norwegian Province of the Fennoscandian Shield: II. Petrology and Geodynamic Nature of Komatiite–Tholeiite Association

Vrevskii A.

Resumo

Numerical modeling of the generation and evolution of parental melts of the komatiite–tholeiite association of the Uraguba structure was carried out using previously obtained geochemical and isotope data. It was established that komatiite, komatiite and tholeiite basalts depleted in LREE and having εNd(Т = 2.79) = +2.9…+3.2 were generated by equilibrium partial melting (F > 15%) of a depleted source (garnet-bearing Ol0.63 + Opx0.22 + Cpx0.06 + Grt0.09 mantle peridotite) at 4–8 GPa, while the genesis of primary melts of LREE-enriched komatiites (LaN/SmN ~ 1.2–1.6) with εNd(Т = 2.79) = +2.5…+2.2 was related to the equilibrium partial melting (F > 20%) of an “enriched mantle peridotite” (EM–Ol0.60 + Opx0.20 + Cpx0.08 + Grt0.12) at pressure of 2.5–4 GPa. Coexistence in space and time of two types of melting products of mantle peridotites formed at different depths is explained by melting of different parts of adiabatically ascending mantle plume.

Petrology. 2018;26(3):246-254
pages 246-254 views

Determining the Geodynamic Setting of Adakitic Granitoids Using Geochemical Data

Velikoslavinskii S., Kotov A., Krylov D., Larin A.

Resumo

Discriminant analysis was performed for representative sets of igneous rocks with adakitic geochemical signatures (granitoids of Archean tonalite–trondhjemite–granodiorite suites, island-arc adakites, and adakites and adakitic granitoids of collisional to postcollisional geodynamic settings). It was shown that the granitoids of Archean tonalite–trondhjemite–granodiorite suites are significantly different from islandarc adakites, as well as from collisional to postcollisional adakites and adakitic granitoids. The following discriminant function was proposed for the geodynamic classification of island arc and collisional-postcollisional adakites and adakitic granitoids on the basis of chemical composition: DF3 =–1.69324TiO2–0.25537Al2O3–0.21269FeO* + 0.06076MgO–0.09796CaO + 0.47377Na2O + 0.29270K2O + 3.57821P2O5 + 0.00431Rb + 0.00036Sr + 0.03119Y + 0.00006Zr + 0.01088Nb–0.00048Ba + 0.01366La + 0.0004Ce + 0.02319Nd–0.18584Sm + 1.29135Eu–0.62229Gd + 0.3819Dy + 2.06583Er–2.62769Yb + 1.6464.

Petrology. 2018;26(3):255-264
pages 255-264 views

Evolution of Ore-Forming Metasomatic Processes at Large Skarn Iron Deposits Related to the Traps of the Siberian Platform

Mazurov M., Grishina S., Titov A., Shikhova A.

Resumo

The paper presents systematized and synthesized data on the parameters and evolutionary sequence of metasomatic processes that accompanied interaction between Permian–Triassic trap complex and rocks of the sedimentary cover of the Siberian Platform at the large skarn iron deposits. Relations of the textural–compositional, morphological, and genetic diversity of the skarns and ores with the phases and stages of the origin of ore-bearing volcano-tectonic edifices are demonstrated with reference to the Korshunovskoe and Rudnogorskoe deposits. The genetic reconstructions are based on survey materials and data on the mineralogy of the rocks and ores (obtained by optical and scanning electron microscopy, microprobe analysis, EPR, Raman and IR spectroscopy, and by studying inclusions in minerals). A principally important feature of the volcano-tectonic edifices of the large mineral deposits is their multistage evolution and combinations of fluid-conducting zones, which are related to (1) volcanic apparatuses, (2) shallow-depth magmatic chambers (laccoliths) hosted in carbonate–salt rocks, and (3) multistage fracture structures produced by the collapse of the leached space. The major ore-bearing structures were formed simultaneously with the development of an intermediate magmatic chamber hosted in Cambrian carbonate–salt rocks beneath a seal of terrigenous sedimentary rocks. Magmatic-stage magnesian skarns with disseminated ores in them and in the calciphyres were produced during the prograde stage in the apical parts of the laccoliths, at contacts between the dolerites and dolomites. During the early prograde stage, skarn–ore bodies developed around injection bodies of globulated dolerites, laccoliths, and sills; stockworks and steep bodies of fragmentary magnesian and calcic skarns and ores were formed within the diatremes; and conformable bodies and veins were produced in the splay fracture zones. The later reactivation of faults and fractures and the involvement of connate brines and solutions from the evaporite complex triggered the redeposition of the ore masses, crystallization of the mineral assemblages of hydrated skarns, development of large domains of serpentine–chlorite–epidote–amphibole rocks, calcic skarns, and ores. Data on multiphase fluid inclusions in the forsterite, apatite, and halite indicate that the mineral-forming fluid initially was a highly concentrated solution–melt (total salinity of 60%) with high-density reduced gases. The magnesian skarns were formed during the following stages: (1) forsterite + fassaite + spinel + first-population magnetite (820–740°C); (2) phlogopite + titanite + pargasite + second-population magnetite (600–500°C), and (3) clinochlore + serpentine + tremolite + pyrrhotite + chalcopyrite (≥450°C).

Petrology. 2018;26(3):265-279
pages 265-279 views

Differentiated Mafic–Ultramafic Intrusions of the Kruglogorsky Type in the Noril’sk Area: Petrology and Ore Potential

Sluzhenikin S., Malitch K., Grigor’eva A.

Resumo

Intrusions of the Kruglogorsky type are an integral part of magmatic formations in the Noril’sk area. The marginal portions of these intrusions are composed of microdolerite, dolerite, and contact gabbrodolerite. The central parts of the intrusions consist of leucogabbro and of olivine-free, olivine-bearing, and olivine gabbro-dolerite. Leucogabbro is a characteristic rock of this type of intrusions and sometimes composes up to half of the thicknesses of the rock units. The rocks with plagioporphyritic textures are widespread. Olivine-free, olivine-bearing, and olivine gabbro-dolerite occur as horizons with indistinct boundaries, which are unevenly distributed over the vertical sections of the lithological units. The olivine is the most magnesian (Fo89-64) and richest in Ni (up to 0.23 wt % NiO) in the olivine gabbro-dolerite. The clinopyroxene is represented by augite (Fs12-29). The rock-forming minerals are typically zoned. The Sr isotopic composition of the rocks (calculated for an age of 250 Ma) varies within a considerable range (87Sr/86Sr = 0.705972–0.708006), due to metasomatic alterations. The variations in the Nd and Sr isotopic composition of the Kruglogorsky intrusion are close to those in rocks of the Noril’sk-type ore-bearing intrusions. The olivine-bearing and taxitic gabbro-dolerite host Pt–Cu–Ni ore mineralization, which are of economic value for disseminated ores of the Talnakh area.

Petrology. 2018;26(3):280-313
pages 280-313 views

P-bearing Olivines from the “Luna-20” Soil Samples, Their Sources and Possible Phosphorus Substitution Mechanisms in Lunar Olivine

Demidova S., Ntaflos T., Brandstätter F.

Resumo

Rocks with P-bearing olivine were found in soil samples delivered by the “Luna-20” automated station. They are ascribed to the highland anorthosite–norite (more rarely, gabbro-norite)–troctolite rock series enriched in phosphorus and other incompatible elements, but are not related to typical KREEP rocks enriched in incompatible elements. Their source is presumably of hybrid origin and related to primary high- Mg suite (HMS) rocks. The occurrence of high- and low-Cr populations of P-bearing olivine in different structural rock types can be attributed to the annealing-related more rapid chromium diffusion (relative to that of phosphorus) in olivine from metamorphosed rocks. This assumption is supported by stoichiometric formula calculations of these olivines. An alternative explanation for these olivine populations is their derivation from at least two different sources. Disequilibrium crystallization of the P-bearing olivines, which is confirmed by an intricate phosphorus zoning, excludes the existence of P-rich melts, which is consistent with previous observations. At the same time, olivine fractionation can be responsible for the phosphorus content in lunar melts. The incorporation of phosphorus in olivine of the “Luna-20” anorthosite troctolites is presumably controlled by a coupled substitution mechanism of divalent cations and silicon for phosphorus and chromium in the tetrahedral and octahedral sites (Milman-Barris et al., 2008). Another possible mechanism is the substitution of divalent cations in octahedral sites by phosphorus and chromium, which provides the possible presence of P3+.

Petrology. 2018;26(3):314-327
pages 314-327 views

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies