Acesso aberto Acesso aberto  Acesso é fechado Acesso está concedido  Acesso é fechado Somente assinantes

Volume 26, Nº 1 (2018)

Article

Chronology of Magmatic Activity and Petrologic–Mineralogical Characteristics of Lavas of Kazbek Quaternary Volcano, Greater Caucasus

Lebedev V., Parfenov A., Vashakidze G., Gabarashvili Q., Chernyshev I., Togonidze M.

Resumo

The paper presents detailed isotope-geochronological, geological, and petrologic–mineralogical data on lavas of one of the greatest Quaternary magmatic area in the Greater Caucasus, the Kazbek neovolcanic center, including polygenetic Kazbek stratovolcano and a number of subordinate volcanic cones in its vicinities. The research was conducted based on a representative collection of more than 150 geological samples that characterize most of the volcanic cones and lava flows of different age, some of which were known previously, and other were discovered by the authors. The high-precision K–Ar data obtained on these materials make it possible to reproduce the evolutionary history of youngest magmatism at the Kazbek center and evaluate the total duration of this evolution at ~450 ka. The magmatic activity was subdivided into four phases (at 460–380, 310–200, 130–90, and <50 ka) with long-lasting interludes in between. Because the latest eruptions occurred in the Kazbek vicinity in the Holocene, this volcano is regarded as potentially active. The volcanic rocks of the Kazbek center make up a continuous compositional succession of basaltic (trachy)andesite–(trachy)andesite–dacite and mostly belong to the calc–alkaline series. The principal petrographic characteristics of the rocks and the composition of their phenocryst minerals are determined, mineral assemblages of these minerals are distinguished in the lavas of different type, and the temperature of the magmatic melts is evaluated. A principally important role in the petrogenesis of the Kazbek youngest magmas is proved to have been played by fractional crystallization and replenishment of mafic melts in the magmatic chambers beneath the volcano, which resulted in their mixing and mingling with the residual dacite melt and the origin of high-temperature hybrid andesite lavas. The comprehensive geological studies, involving interpretation of high-resolution satellite images, allowed the authors to compile the first detailed (1: 25 000) volcanologic map of the Kazbek center and a geochronologic chart supplemented with a stratigraphic column, which illustrate the origin sequence of the volcanic vents and their lava flows, geological relations between them, as seen in reference geological sections, and variations in the composition of the magmatic products with time.

Petrology. 2018;26(1):1-28
pages 1-28 views

The Composition and Age of the Mesoarchean Gabbro in the South Vygozersky and Kamennoozersky Greenstone Structures, Karelia

Myskova T., Zhitnikova I., Lvov P.

Resumo

The geochemical and zircon geochronological (U-Pb, SHRIMP-II) study of Mesoarchean gabbros of the South Vygozersky and Kamennoozersky greenstone structures of Central Karelia made it possible to distinguish four gabbro types: (1) Fe–Ti gabbro, 2869 ± 12 Ma, (2) gabbro compositionally close to tholeiitic basalts, 2857 ± 7 Ma, (3) leucogbabbro, 2840 ± 5 Ma; and (4) melanogabbro, 2818 ± 14 Ma. From the early to late gabbros, the rocks are depleted in Ti, Fe, V, Y, Zr, Nb, Hf, REE and enriched in Mg, Ca, Cr, Ni. According to the systematics (Condie, 2005), the Nb/Y, Zr/Y, Zr/Nb ratios in the studied Late Archean gabbros are close to those of primitive mantle, while the gabbros in composition are similar to those of plumederived ocean-plateau basalts. Their magma sources were derived from different mantle reservoirs. The leucogabbro and melanogabbro with similar εNd = +4 were derived from a depleted mantle source (DM). The gabbro close in composition to tholeiitic basalts and having the elevated positive εNd (+4.9) was derived from a strongly depleted mantle source. Insignificant admixture of crustal material or lithospheric mantle is inferred in a source of the Fe–Ti gabbro (with lowest εNd = +2.1).

Petrology. 2018;26(1):29-46
pages 29-46 views

Genesis of the Paleoproterozoic Rare-Metal Granites of the Katugin Massif

Donskaya T., Gladkochub D., Sklyarov E., Kotov A., Larin A., Starikova A., Mazukabzov A., Tolmacheva E., Velikoslavinskii S.

Resumo

We studied the petrography, mineralogy, and geochemistry of the Paleoproterozoic (2.06 Ga) granites of the Katugin massif (Stanovoy suture zone), which hosts the combined rare-metal Katugin deposit. Three groups of granites were distinguished: (1) biotite (Bt) and biotite–riebeckite (Bt–Rbk) granites of the western block of the massif; (2) biotite–arfvedsonite (Bt–Arf) granites of the eastern block; and (3) arfvedsonite (Arf), aegirine–arfvedsonite (Aeg–Arf), and aegirine (Aeg) granites of the eastern block. The Bt and Bt–Rbk granites of the first group are mainly metaluminous and peraluminous rocks with rather high CaO contents and the minimum F contents among the granites described here. It was suggested that the granites of this group could be derived from a source dominated by crustal rocks with a small addition of mantle materials. These granites probably crystallized from a metaluminous–peraluminous melt with elevated CaO and moderate F contents. Melts of such compositions are least favorable for the crystallization of ore minerals. The Bt–Arf granites of the second group are mainly peralkaline and show high contents of CaO and Y and low contents of Na2O and F. A mixed mantle–crust source was proposed for the Bt–Arf granites. The initial melt of the Bt–Arf granites could have a peralkaline composition with elevated CaO content and moderate to high F content. The Arf, Aeg–Arf, and Aeg granites of the third group are enriched in ore mineral and were classified as peralkaline granites with very low CaO contents, elevated Na2O and F contents, and usually very high contents of Zr, Hf, Nb, and Ta. Based on the geochemical and isotopic data, it was supposed that the source of the granites of the third group could be derivatives of basaltic magmas produced in an OIB-type source with a minor addition of crustal material to the magma generation zone. It was suggested that the primary melt of this granite group could be a peralkaline CaO-poor and F-rich silicic melt, which is most favorable for the crystallization of ore minerals. Based on the analysis of the geochemical characteristics of the three granite groups and their relationships within the Katugin massif, a qualitative model of its formation was proposed. According to this model, the Bt and Bt–Rbk granites of the western block crystallized first, followed by the Bt–Arf granites of the eastern block and, eventually, the Arf, Aeg–Arf, and Aeg granites enriched in ore minerals.

Petrology. 2018;26(1):47-64
pages 47-64 views

Ultrapotassic Volcanism of the Valagin Ridge, Kamchatka

Fedorov P., Bogomolov E.

Resumo

New isotopic-geochemical data are reported on the Late Cretaceous–Paleocene ultrapotassic volcanic rocks of the alkaline–ultrabasic complex of the Valagin Ridge, Eastern Kamchatka. The high Mg, low Ca and Al contents at high K/Na ratios in these rocks make them similar to the Mediterranean-type lamproites and ultrapotassic rocks. The low contents of high-field strength (HFSE) and heavy rare-earth (HREE) elements relative to the MORB composition, and the low Sr and high Nd isotopic ratios indicate the formation of their primary melts from a depleted mantle source. The enrichment of the ultrapotassic rocks in the large-ion lithophile elements (LILE) can be explained by the fluid influx in melts during melting of subsided oceanic crust.

Petrology. 2018;26(1):65-81
pages 65-81 views

Impactor Type and Model of the Origin of the Zhamanshin Astrobleme, Kazakhstan

Gornostaeva T., Mokhov A., Kartashov P., Bogatikov O.

Resumo

Fragments of heterogeneous cosmonegic substance (nickelphosphide Ni3P and ZnAl2) were found using high resolution analytical electron microscopic techniques, for the first time in samples from a large meteorite crater: the Zhamanshin astrobleme in Kazakstan. Inasmuch as such fragments cannot simultaneously occur in meteorite of any one type, we suggest that the impactor of the Zhamanshin crater was of comet nature.

Petrology. 2018;26(1):82-95
pages 82-95 views

Island-arc and Active Continental Margin Adakites from the Sabzevar Zone, Iran

Omrani H.

Resumo

Cretaceous to Eocene plutonic and volcanic rocks of the Sabzevar zone have an adakite characteristic with high Sr/Y ratio, depleted HFSE and enriched LILE features. Most of the Sabzevar adakites are high silica adakites with low Ni, Cr and Co contents. LREE/HREE ratio is high, while K2O content is low to intermediate. Adakites in the Sabzevar zone are exposed in two areas, which are named southern and northern adakites here. The combination of Sr, Nd and Pb isotopic data with major and trace elements indicates that the adakitic rocks are formed by partial melting of the Sabzevar oceanic slab. Nb/Ta content of the samples indicates that the adakitic magmas were generated at different depth in the subduction system. Dy/Yb ratios of adakitic samples indicate positive, negative and roughly flat patterns for different samples, suggesting garnet and amphibole as residual phases during slab-derived adakitic magma formation. Sabzevar adakites emplaced during late to post-kinematic events. Sabzevar oceanic basin demised during a northward subduction by central Iranian micro-continents (CIM) and Eurasia plate convergence.

Petrology. 2018;26(1):96-113
pages 96-113 views

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies