Physical and Chemical Parameters of Processes Producing Rare-Metal Deposits in Granitoid Systems with Fluorine: Experimental Data


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The origin of rare-metal deposits in granites is considered with regard for experimental data, which place constraints onto interpretations of geological materials and the genetic models. The role of both magmatic and hydrothermal–metasomatic factors in the formation of various types of rare-metal deposits is discussed. The saturation concentrations of Ta and Nb in granite melt significantly depend on the melt composition and vary from ~2–5 to ~0.1 wt %. These concentrations depend much less significantly on temperature and pressure. In granite melt in equilibrium with fluorine-bearing fluid, Ta and Nb are strongly partitioned into the melt. The paper demonstrates principal difference in the partitioning of W and Ta, Nb, Sn in melt granite–salt systems. The fluoride water–salt phase is a very effective extractant of W, while Ta, Nb, and Sn are completely retained in the aluminosilicate melt. The model magmatic fluid in equilibrium with Li–F granite melt is multiphase and contains significant amounts of SiO2 and Na, Al, Li and K fluorides. The solubility of ore minerals in this fluid is insignificant, with the concentration of Nb much higher than that of Ta. The HF concentrations in high-temperature magmatic fluids were estimated at ~0.5–1 M HF. The experimentally determined solidus temperatures of Li–F granites are ~570–630°C at a pressure of 100–200 MPa. At T = 300–550°С and P = 50–100 MPa, the actual hydrothermal transfer of Ta and Nb is possible only with sufficiently concentrated HF and, possibly, KF solutions (fluids). In sodium alkaline solutions, hydrothermal transport is quite probable for Nb but difficult for Ta, and the pyrochlore solubility is thereby higher than that of columbite.

Авторлар туралы

Yu. Shapovalov

Korzhinskii Institute of Experimental Mineralogy (IEM), Russian Academy of Sciences

Email: chev@iem.ac.ru
Ресей, Chernogolovka, Moscow oblast, 142432

V. Chevychelov

Korzhinskii Institute of Experimental Mineralogy (IEM), Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: chev@iem.ac.ru
Ресей, Chernogolovka, Moscow oblast, 142432

V. Korzhinskaya

Korzhinskii Institute of Experimental Mineralogy (IEM), Russian Academy of Sciences

Email: chev@iem.ac.ru
Ресей, Chernogolovka, Moscow oblast, 142432

N. Kotova

Korzhinskii Institute of Experimental Mineralogy (IEM), Russian Academy of Sciences

Email: chev@iem.ac.ru
Ресей, Chernogolovka, Moscow oblast, 142432

A. Redkin

Korzhinskii Institute of Experimental Mineralogy (IEM), Russian Academy of Sciences

Email: chev@iem.ac.ru
Ресей, Chernogolovka, Moscow oblast, 142432

A. Konyshev

Korzhinskii Institute of Experimental Mineralogy (IEM), Russian Academy of Sciences; Vernadsky Institute of Geochemistry and Analytical Chemistry (GEOKhI), Russian Academy of Sciences

Email: chev@iem.ac.ru
Ресей, Chernogolovka, Moscow oblast, 142432; Moscow, 119991


© Pleiades Publishing, Ltd., 2019

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>