Vliyanie sily tyazhesti na dvizhenie chastits titanovogo poroshka v plazmennom potoke

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An attempt is presented to determine the influence of the spray direction on the particles movement in a plasma flow in order to assess the influence of gravity. Three spray directions are selected: down, up and horizontal. Titanium powder PTM-1 TU 14-22-57-92 was considered. For each of the spraying directions under consideration, the movement of titanium powder particles of different dispersion in the plasma flow was calculated using the finite element method with using the SolidWorks software package. Particles with sizes of 1, 50 and 90 microns were selected as the sprayed powder material. The change in the temperature of powder particles when moving in a plasma flow depending on the direction of spraying has been studied. A comparative analysis was carried out for the spraying directions under consideration, based on the results of which the advantages and disadvantages were described and recommendations were given for conducting the processes of obtaining powder and applying coatings. The presented data can be useful when choosing the position of the substrate for applying functional coatings. The influence of gravity on the separation of the resulting powders and on the temperature distribution of the plasma flow in the studied area is demonstrated. To verify the calculation results, a full-scale experiment was carried out in a plasma installation assembled at the IMET Ural Branch of the Russian Academy of Sciences, which is used for producing powder and applying coatings, taking into account its design features. The results have practical benefits for developers and consumers of technological equipment.

About the authors

R. A Okulov

Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia; Institute of Fundamental Education, Ural Federal University named after the first President of Russia B.N. Yeltsin, Yekaterinburg, Russia

Email: okulov.roman@gmail.com

V. A Krashaninin

Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia

Email: okulov.roman@gmail.com

B. R Gel'chinskiy

Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia

Email: okulov.roman@gmail.com

A. A Rempel'

Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia

Author for correspondence.
Email: okulov.roman@gmail.com

References

  1. Ноздрин, И.В. Разработка научных основ и технологий плазмометаллургического производства нанопорошков борида и карбида хрома: дис. … докт. техн. наук: 05.16.06 / Ноздрин Игорь Васильевич; Сиб. федер. ун-т. - Красноярск, 2015. 323 с.
  2. Sneha, S. Thermal plasma technology: the prospective future in material processing / S. Sneha //j. Cleaner Production. 2017. V.142. №4. P.3131-3150.
  3. Струков, Н.Н. Разработка технологии плазменного распыления прутковых материалов в камере с противотоком: дис. … канд. техн. наук: 05.02.10 / Струков Николай Николаевич; Пермский нац. исследоват. политех. ун-т. Пермь, 2012. 126 с.
  4. Sunpreet, S. Material issues in additive manufacturing: a review / S. Sunpreet, R. Seeram, S.Rupinder //j. Manufact. Proc. 2017. V.25. P.185-200.
  5. Фролов, В.А. Технологические особенности методов свеpхзвукового газотеpмического напыления (обзоp) / В.А. Фpолов, В.А. Поклад, Б.В. Pябенко, Д.В. Виктоpенков // Сварочное производство. 2006. №11. С.38-47.
  6. Денисова, Ю.А. Эволюция структуры поверхностного слоя стали, подвергнутой электронно-ионно-плазменным методам обработки / Ю.А. Денисова, Ю.Ф. Иванов, О.В. Иванова [и др.]. - Томск: Изд-во научно-технической литературы, 2016. 303 с.
  7. Neikov, O. Non-ferrous powder production: manufacturing methods and properties of copper, aluminium, titanium and nickel powders / O. Neikov // Powder Metallurgy Review. 2014. Summer. P.65-87.
  8. Leyens, C. Titanium and titanium alloys: fundamentals and applications / C. Leyens, M. Peters. - Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2003. 513 р.
  9. Anakhov, S.V. Gas vortex stabilization in plasma torches: new solutions / S.V. Anakhov, Yu.A. Pykin, A.V. Matushkin // Welding International. 2016. V.30. Is.5. P.408-412.
  10. Bora, B. Numerical investigation of nanoparticle synthesis in supersonic thermal plasma expansion / B. Bora, B.J. Saikia, C. Borgohain, M. Kakati, A.K. Das // Vacuum. 2010. V.85. Is.2. P.283-289.
  11. Masaya, S. Effect of precursor fraction on silicide nanopowder growth under thermal plasma conditions: a computational study / S. Masaya, W. Takayuki // Powder Technology. 2016. V.288. P.191-201.
  12. Клименко, А.А. Конструкции электродуговых плазмотронов / А.А. Клименко, Г.К. Ляпин. - М.: Изд-во МГТУ им. Баумана, 2010. 56 с.
  13. Матушкин, А.В. Совершенствование системы газовихревой стабилизации электродуговых плазмотронов для резки металлов: дис. … канд. техн. наук: 05.02.10 / Матушкин Анатолий Владимирович; Ур. федер. ун-т им. первого Президента России Б.Н. Ельцина. - Екатеринбург, 2017. 132 с.
  14. Gelchinski, B.R. High-entropy alloys: properties and prospects of application as protective coatings / B.R. Gelchinski, I.A. Balyakin, A.A. Yuryev, A.A. Rempel // Russian Chemical Rev. 2022. V.91. Is.6. Art.RCR5023.
  15. Hong, F. Synthesis and characterization of silicon oxide nanoparticles using an atmospheric DC plasma torch / F. Chau-Nan Hong, C.-J. Yan // Advanced Powder Technol. 2018. V.29. P.220-229.
  16. He, J. Simulation and experimental observation of silicon particles vaporization in RF thermal plasma reactor for preparing Si nano-powder /j. He, L. Bai, H. Jin, Z. Jia, G. Hou, F. Yuan // Powder Technology. 2017. V.313. P.27-35.
  17. Quesnel, F. Nanowires and nanostructures of lithium titanate synthesized in a continuous thermal plasma reactor / F. Quesnel, G. Soucy, J. Veilleux, P. Hovington, W. Zhu, K. Zaghib // Chem. Eng. J. 2016. V.306. P.640-645.
  18. Hou, H. Spheroidizing mechanisms and simulation of spherical silica in oxygen-acetylene flame / H. Hou, Z. Ji, Z. Xie, H. Jin // Advanced Powder Technol. 2018. V.29. P.789-795.
  19. Anupam, A. Understanding the microstructural evolution of high entropy alloy coatings manufactured by atmospheric plasma spray processing / A. Anupam, R.S. Kottada, S. Kashyap, A. Meghwal, B.S. Murty, C.C. Berndt, A.S.M. Ang // Applied Surface Science. 2020. V.505. Art.144117.
  20. Dalir, E. Modeling of suspension plasma spraying process including arc movement inside the torch / E. Dalir, A. Dolatabadi, J. Mostaghimi //j. Thermal Spray Technol. 2019. V.28. P.1105-1125.
  21. Subbiah, R. Experimental study of wear behaviour on Al-2014 alloy coated with thermal spray HVOF (high velocity oxy-fuel) and plasma spray process: a review / R. Subbiah, A. Arun, A. A. Lakshmi, A.N.S. Harika, N. Ram, N. Sateesh // Materials Today: Proceedings. 2019. V.18. P.5151-5157.
  22. Li, S.Q. Flame aerosol synthesis of nanostructured materials and functional devices: Processing, modeling, and diagnostics / S.Q. Li, Y. Ren, P. Biswas, S.D. Tse // Progress in Energy and Combustion Science. 2016. V.55. P.1-59.
  23. Torabmostaedi, H. Process control for the synthesis of ZrO2 nanoparticles using FSP at high production rate / H. Torabmostaedi, T. Zhang, P. Foot, S. Dembele, C. Fernandez // Powder Technology. 2013. V.246. P.419-433.
  24. Okulov, R.A. Influence of the plasmatron anode length in the processes of powder production and coating / R.A. Okulov, V.A. Krashaninin, E.V. Popov // AIP Conf. Proceed. 2022. V.2456. Art.020035.
  25. Волф, У. Справочник по инфракрасной технике / У. Волф, Б. Герман, Э. Ла Рокка, Г. Сьюте, Р. Тернер. Р. Хуфнагел. - М.: Мир, 1995. 606 с.
  26. Солонин, И.С. Математическая статистика в технологии машиностроения / И.С. Солонин. - М.: Машиностроение, 1972. 215 с.
  27. Кравченко, Н.С. Методы обработки результатов измерений и оценки погрешностей в учебном лабораторном практикуме: учеб. пособие / Н.С. Кравченко, О.Г. Ревинская. - Томск: Изд-во Томского политех. ун-та, 2011. 88 с.
  28. Okulov, R.A. Effect of the plasma-forming gas consumption on processes of plasma spray coating and metal powder production / R.A. Okulov, K.I. Sarsadskikh, S.A. Ilinykh, M.N. Zakharov //j. Physics: Conf. Ser. 2019. V.1281. Art.012058.
  29. Okulov, R.A. Development of the computer model of the plasma installation / R.A. Okulov, E.V. Popov, B.R. Gelchinsky, A.A. Rempel //j. Physics: Conf. Ser. 2021. V.2064. Art.012044.
  30. Okulov, R.A. Plasma jet stream simulation for formation coating and powder manufacturing processes / R.A. Okulov, V.A. Krashaninin, E.V. Popov //j. Physics: Conf. Ser. 2021. V.1954. Art.012033.
  31. Madler, L. Controlled synthesis of nanostructured particles by flame spray pyrolysis / L. Madler, H.K. Kammler, R. Mueller, S.E. Pratsinis // Aerosol Science. 2002. V.33. P.369-389.
  32. He, J. Optimization of tungsten particles spheroidization with different size in thermal plasma reactor based on numerical simulation /j. He, L. Bai, H. Jin, F. Yuan // Powder Technology. 2016. V. 302. P.288-297.
  33. Neikov, O.D. Nanopowders / O.D. Neikov, N.A. Yefimov // Handbook of Non-Ferrous Metal Powders. - [S.l.]: Elsevier, 2019. Chapter 9. P.271-311.
  34. Zhu, H. Study on behaviors of tungsten powders in radio frequency thermal plasma / H. Zhu, H. Tong, C. Cheng, N. Liu // Intern. J. Refractory Metals and Hard Materials. 2017. V.66. P.76-82.
  35. Chazelas, C. Synthesis of nanometer alumina particles by plasma transferred arc alternative / C. Chazelas, J.F. Coudert, J. Jarrige, P. Fauchais //j. European Ceramic Soc. 2007. V.27. P.947-950.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies