NEUROLOGICAL MANIFESTATIONS OF PRIMARY CHOLESTATIC LIVER DISEASES


如何引用文章

全文:

详细

The most typical and early signs of primary cholestatic liver diseases are represented by itching, prominent asthenia and autonomic dysfunction. These abnormalities significantly affect the quality of life. The data obtained relate itching and asthenic syndrome in cholestatic liver diseases to pathological changes of the central nervous system (CNS). The special scales for assessment of severity of asthenic manifestations, itching and quality of life in primary biliary cholangitis were developed. Besides, memory defects and loss of concentration ability are quite often seen even in non-cirrhotic patients. These defects have a tendency to progress without obvious associations with biochemical and histological parameters of liver disease severity. Some investigators underline the association of asthenic and cognitive disorders with autonomic dysfunction, systolic hypotension and impaired brain perfusion. The origin of itching in cholestatic liver diseases is largely attributed to central nociceptive sensitization and an increased tone of endogenous opiate system. Pathogenetic mechanisms of CNS dysfunction in non-cirrhotic patients with cholestatic diseases may involve neuroinflammation, hypovitaminosis D and E, influence of secondary hyperparathyroidism and exсessive bile acids concentration in blood.

作者简介

Julia Shulpekova

«The I.M. Sechenov First Moscow State Medical University (Sechenov University)»

Email: jshulpekova@gmail.com
candidate of medical sciences, associate professor, chair of internal diseases propaedeutics, medical faculty, «I.M. Sechenov First Moscow State Medical University (Sechenov University)», 119991, Moscow, Russian Federation 119991, Moscow, Russian Federation

E. Shirokova

«The I.M. Sechenov First Moscow State Medical University (Sechenov University)»

119991, Moscow, Russian Federation

V. Rusyaev

«The I.M. Sechenov First Moscow State Medical University (Sechenov University)»

119991, Moscow, Russian Federation

I. Damulin

«The I.M. Sechenov First Moscow State Medical University (Sechenov University)»

119991, Moscow, Russian Federation

参考

  1. Ивашкин В.Т., Широкова Е.Н. Холестаз: Руководство для врачей. - Москва: СИМК, 2012
  2. Goldblatt J., Taylor P.J.S., Lipman T., Prince M., Baragiotta M., Bassendine M.F., James O.F., Jones D.E. et al. The true impact of fatigue in primary biliary cirrhosis: a population study. Gastroenterology. 2002; 122: 1235-1241. doi: 10.1053/gast.2002.32993.
  3. Newton J.L., Bhala N., Burt J., Jones D.E.J. Characterisation of the associations and impact of symptoms in primary biliary cirrhosis using a disease specific quality of life measure. Journal of Hepatology. 2006; 44: 776-782. doi: 10.1016/j.jhep.2005.12.012.
  4. Jones E.A., Yurdaydin C. Is fatigue associated with cholestasis mediated by altered central neurotransmission? Hepatology. 1997;25(2):492-4. doi: 10.1002/hep.510250239.
  5. Valko P.O., Bassetti C.L., Bloch K.E., Held U., Baumann C.R. Validation of the Fatigue Severity Scale in a Swiss Cohort. Sleep. 2008; 31(11): 1601-1607.
  6. Kumar D., Tandon R.K. Fatigue in cholestatic liver disease-a perplexing symptom. Postgraduate Medicine Journal. 2002; 78(921): 404-407. doi: 10.1136/pmj.78.921.404.
  7. Milkiewicz P., Heathcote E.J. Fatigue in chronic cholestasis. Gut. 2004; 53(4): 475-477. doi: 10.1136/gut.2003.025155.
  8. Schwartz J.E., Krupp L.B. The measurement of fatigue: a new instrument. Journal of Psychosomatic Research.1993; 37: 753-62. doi: 10.1016/0022-3999(93)90104-N.
  9. Prince M.I., James O.F., Holland N.P., Jones D.E. Validation of a fatigue impact score in primary biliary cirrhosis: towards a standard for clinical and trial use. Journal of Hepatology. 2000; 32(3): 368-373. doi: 10.1016/S0168-8278(00)80385-2.
  10. Jacoby A., Rannard A., Buck D., et al. Development, validation, and evaluation of the PBC-40, a disease specific health related quality of life measure for primary biliary cirrhosis. Gut. 2005; 54(11): 1622-1629. doi: 10.1136/gut.2005.065862.
  11. Jones D.E. Fatigue in cholestatic liver disease: is it all in the mind? Journal of Hepatology. 2007; 46(6): 992-4. doi: 10.1016/j.jhep.2007.03.006.
  12. Swain M.G., Le T. Chronic cholestasis in rats induces anhedonia and loss of social interest. Hepatology. 1998; 28: 6-10. doi: 10.1002/hep.510280102.
  13. Newton J.L., Hollingsworth K.G., Taylor R., El-Sharkawy A.M., Khan Z.U., Pearce R., Sutcliffe K., Okonkwo O., Davidson A., Burt J., Blamire A.M., Jones D. Cognitive impairment in primary biliary cirrhosis: symptom impact and potential etiology. Hepatology. 2008; 48(2): 541-9. doi: 10.1002/hep.22371.
  14. Newton J.L., Hollingsworth K.G., Taylor R., El-Sharkawy A.M., Khan Z.U., Pearce R., Sutcliffe K., Okonkwo O., Davidson A., Burt J., Blamire A.M., Jones D. Cognitive impairment in primary biliary cirrhosis: symptom impact and potential etiology. Hepatology. 2008;48(2):541-9. doi: 10.1002/hep.22371.
  15. Dyson J.K., Elsharkawy A.M., Lamb C.A., Al-Rifai A., Newton J.L., Jones D.E., Hudson M. Fatigue in primary sclerosing cholangitis is associated with sympathetic over-activity and increased cardiac output. Liver International. 2015; 35(5): 1633-41. doi: 10.1111/liv.12709.
  16. Frith J., Newton J.L. Autonomic dysfunction in chronic liver disease. Hepatic Medicine: Evidence and Research. 2011; 3: 81-87. doi: 10.2147/HMER.S16312.
  17. Lhuillier F., Dalmas E.D., Gratadour P.M., Cividjian A.A., Boillot O.C., Quintin L., Viale J.P. Spontaneous baroreflex cardiac sensitivity in end-stage liver disease: effect of liver transplantation. European Journal of Anaesthesiology. 2006; 23(5): 426-432. doi: 10.1017/S0265021506000184.
  18. Di Stefano С., Milazzo V., Milan A., Veglio F., Maule S. The role of autonomic dysfunction in cirrhotic patients before and after liver transplantation. Review of the literature. Liver International. 2016; 36: 1081-1089. doi: 10.1111/liv.13126.
  19. Elman S., Hynan L.S., Gabriel V., Mayo M.J. The 5-D itch scale: a new measure of pruritus. The British Journal of Dermatology. 2010; 162(3): 587-593. doi: 10.1111/j.1365-2133.2009.09586.x.
  20. Hegade V.S., Bolier R., Oude Elferink R.P., Beuers U., Kendrick S., Jones D.E. A systematic approach to the management of cholestatic pruritus in primary biliary cirrhosis. Frontline Gastroenterology. 2016; 7(3): 158-166. doi: 10.1136/flgastro-2015-100618.
  21. Carstens E., Akiyama T., editors. Itch: Mechanisms and Treatment. Boca Raton (Florida): CRC Press/Taylor & Francis; 2014.
  22. Oslin D. W., Berrettini W., Kranzler H. R., Pettinati H., Gelernter J., Volpicelli J. R., O’Brien C. P. A functional polymorphism of the mu-opioid receptor gene is associated with naltrexone response in alcohol-dependent patients. Neuropsychopharmacology. 2003; 28(8): 1546-1552. doi: 10.1038/sj.npp.1300219.
  23. Floreani A., Carderi I., Variola A., Rizzotto E. R., Nicol J., Bergasa N. V. A novel multidrug-resistance protein 2 gene mutation identifies a subgroup of patients with primary biliary cirrhosis and pruritus. Hepatology. 2006; 43(5): 1152-1154. doi: 10.1002/hep.21165.
  24. Kerfoot S/M, D’Mello C., Nguyen H., Ajuebor N.N., Kupes P., Lee T., Le T., Swain M.G. TNF-alpha secreting monocytes are recruited into the brain of cholestatic mice. Hepatology. 2006; 43: 154-162. doi: 10.1002/hep.21003.
  25. Swain M.G., Beck.P, Rioux K., Le T. Augmented interleukin-1 beta induced depression of locomotor activity in cholestatic rats. Hepatology. 1998; 28: 1561-1565. doi: 10.1002/hep.510280616.
  26. Grover V.P.B., Southern L., Dyson J.K, Kim J.U., Crossey M.M, Wylezinska-Arridge M., Patel N., Fitzpatrick J.A., Bak-Bol A., Waldman A.D., Alexander G.J., Mells G.F., Chapman R.W., Jones D.E., Taylor-Robinson S.D. Early primary biliary cholangitis is characterised by brain abnormalities on cerebral magnetic resonance imaging. Alimentary Pharmacology & Therapeutics. 2016; 44(9): 936-945. doi: 10.1111/apt.13797.
  27. Hajiasgharzadeh K., Baradaran B. Cholinergic Anti-Inflammatory Pathway and the Liver. Advanced Pharmaceutical Bulletin. 2017; 7(4): 507-513. doi: 10.15171/apb.2017.063.
  28. Forton D., Patel N., Prince M., Oatridge A., Hamilton G., Goldblatt J., Allsop J.M., Hajnal J.V., Thomas H.C., Bassendine M., Jones D.E., Taylor-Robinson S.D. Fatigue and primary biliary cirrhosis: association of globus pallidus magnetization transfer ratio measurements with fatigue severity and blood manganese levels. Gut. 2004; 53: 587-592. doi: 10.1136/gut.2003.016766.
  29. Konstantakis C., Tselekouni.P, Kalafateli M., Triantos C. Vitamin D deficiency in patients with liver cirrhosis. Annals of Gastroenterology : Quarterly Publication of the Hellenic Society of Gastroenterology. 2016; 29(3): 297-306. doi: 10.20524/aog.2016.0037.
  30. Agmon-Levin N., Kopilov R., Selmi C., Nussinovitch U., Sánchez-Castañón M., López-Hoyos M., Amital H., Kivity S., Gershwin E.M., Shoenfeld Y. Vitamin D in primary biliary cirrhosis, a plausible marker of advanced disease. Immunologic Research. 2015; 61(1-2): 141-6. doi: 10.1007/s12026-014-8594-0.
  31. Cui X., Gooch H., Petty A., McGrath J.J., Eyles D. Vitamin D and the brain: Genomic and non-genomic actions. Molecular and Cellular Endocrinology. 2017; 453: 131-143. doi: 10.1016/j.mce.2017.05.035.
  32. Di Somma C, Scarano E, Barrea L, Zhukouskaya VV, Savastano S, Mele C, Scacchi M, Aimaretti G, Colao A, Marzullo P. Vitamin D and Neurological Diseases: An Endocrine View. International Journal of Molecular Sciences. 2017; 18(11): 2482. doi: 10.3390/ijms18112482.
  33. Шептулина А.Ф., Широкова Е.Н., Ивашкин В.Т. Ядерные рецепторы в регуляции транспорта и метаболизма желчных кислот. Российский журнал гастроэнтерологии, гепатологии и колопроктологии. 2013; 23(5): 32-45
  34. Buell JS, Dawson-Hughes B. Vitamin D and Neurocognitive Dysfunction: Preventing “D”ecline? Molecular aspects of medicine. 2008; 29(6): 415-422. doi: 10.1016/j.mam.2008.05.001.
  35. Eyles DW, Smith S, Kinobe R, Hewison M, McGrath JJ. Distribution of the vitamin D receptor and 1 alpha-hydroxylase in human brain. Journal of Chemical Neuroanatomy. 2005; 29(1): 21-30. doi: 10.1016/j.jchemneu.2004.08.006.
  36. Garcion E, Wion-Barbot N, Montero-Menei CN, Berger F, Wion D. New clues about vitamin D functions in the nervous system. Trends in Endocrinology and Metabolism. 2002; 13: 100-105. doi: 10.1016/S1043-2760(01)00547-1
  37. Калуев А.В., Еремин К.О., Туохима П. Механизмы нейропротекторного действия витамина D3. Биохимия. 2004; 69(7): 907-911. doi: 10.1023/B:BIRY.0000040196.65686.2f
  38. Mpandzou G., Aït Ben Haddou E, Regragui W, Benomar A., Yahyaoui M. Vitamin D deficiency and its role in neurological conditions: A review. Revue Neurologique. 2016; 172(2): 109-22. doi: 10.1016/j.neurol.2015.11.005.
  39. Jorde R., Waterloo K., Saleh F., Haug E., Svartberg J. Neuropsychological function in relation to serum parathyroid hormone and serum 25-hydroxyvitamin D levels. The Tromsø study. Journal of Neurology. 2006; 253(4): 464-70. doi: 10.1007/s00415-005-0027-5.
  40. Balion, C., Griffith, L. E., Strifler, L., Henderson, M., Patterson, C., Heckman, G., Llewellyn D.J., Raina, P. Vitamin D, cognition, and dementia: A systematic review and meta-analysis. Neurology. 2012; 79(13): 1397-1405. doi: 10.1212/WNL.0b013e31826c197f.
  41. Annweiler C. Vitamin D in dementia prevention. Annals of the New York Academy of Sciences. 2016; 1367(1): 57-63. doi: 10.1111/nyas.13058.
  42. Al-Harthy N., Kumagi T., Coltescu C., Hirschfield G. M. The specificity of fatigue in primary biliary cirrhosis: evaluation of a large clinic practice. Hepatology. 2010; 52(2): 562-70. doi: 10.1002/hep.23683.
  43. Wahsh E., Abu-Elsaad N., El-Karef A., Ibrahim T. The vitamin D receptor agonist, calcipotriol, modulates fibrogenic pathways mitigating liver fibrosis in vivo: An experimental study. European Journal of Pharmacology. 2016; 789: 362-369. doi: 10.1016/j.ejphar.2016.07.052.
  44. Pappa H.M., Bern E., Kamin D., Grand R.J. Vitamin D Status in Gastrointestinal and Liver Disease. Current opinion in gastroenterology. 2008; 24(2): 176-183. doi: 10.1097/MOG.0b013e3282f4d2f3.
  45. Fonseca V., Epstein O., Gill DS., Menon R.K., Thomas M., McIntyre N., Dandona P. Hyperparathyroidism and low serum osteocalcin despite vitamin D replacement in primary biliary cirrhosis. Journal of Clinical Endocrinology and Metabolism. 1987; 64(5): 873-877. doi: 10.1210/jcem-64-5-873.
  46. Dobolyi A., Dimitrov E., Palkovits M., Usdin T.B. The Neuroendocrine Functions of the Parathyroid Hormone 2 Receptor. Frontiers in Endocrinology. 2012; 3: 121. doi: 10.3389/fendo.2012.00121.
  47. Jones E.A. Fatigue associated with chronic liver disease: a riddle wrapped in a mystery inside an enigma. Hepatology. 1995; 22(5): 1606-8. doi: 10.1002/hep.1840220538.
  48. Toescu E.C., Vreugdenhil M. Calcium and normal brain ageing. Cell Calcium. 2010; 47(2): 158-64. doi: 10.1016/j.ceca.2009.11.013.
  49. Chatterjee O., Nakchbandi I.A., Philbrick W.M, Dreyer B.E., Zhang J.P., Kaczmarek L.K., Brines M.L., Broadus A.E. Endogenous parathyroid hormone-related protein functions as a neuroprotective agent. Brain Research. 2002; 930(1-2): 58-66. doi: 10.1016/S0006-8993(01)03407-2.
  50. Lourida I., Thompson-Coon J., Dickens C.M., Lourida I., Thompson-Coon J., Dickens C.M., Soni M., Kuźma E., Kos K., Llewellyn D.J. Parathyroid Hormone, Cognitive Function and Dementia: A Systematic Review. PLoS ONE. 2015; 10(5): e0127574. doi: 10.1371/journal.pone.0127574.
  51. Chou F-F., Chen J-B., Hsieh K-C., Liou C-W. Cognitive changes after parathyroidectomy in patients with secondary hyperparathyroidism. Surgery. 2008; 143(4): 526-532. doi: 10.1016/j.surg.2007.11.019.
  52. Yu. N., Donnan P.T., Flynn R.W, Murphy M.J., Smith D., Rudman A., Leese G.P. Increased mortality and morbidity in mild primary hyperparathyroid patients. The Parathyroid Epidemiology and Audit Research Study (PEARS). Clinical Endocrinology. 2010; 73(1): 30-34. doi: 10.1111/j.1365-2265.2009.03766.x.
  53. Björkman M.P., Sorva A.J., Tilvis R.S. Does elevated parathyroid hormone concentration predict cognitive decline in older people? Aging Clinical and Experience Research. 2010; 22(2): 164-9. doi: 10.3275/6626.
  54. Babinska D., Barczynski M., Stefaniak T., Oseka T., Babinska A., Babinski D., Sworczak K., Lachiński A.J., Nowak W., Sledziński Z. Evaluation of selected cognitive functions before and after surgery for primary hyperparathyroidism. Langenbeck Archive Surgery. 2012; 397(5): 825-831. doi: 10.1007/s00423-011-0885-5.
  55. Patten B.M., Pages M. Severe neurological disease associated with hyperparathyroidism. Annals Neurology. 1984; 15(5): 453-456. doi: 10.1002/ana.410150509.
  56. Cogan M.G., Covey C.M., Arieff A.I, Wisniewski A., Clark O.H., Lazarowitz V., Leach W. Central nervous system manifestations of hyperparathyroidism. American Journal of Medicine. 1978; 65(6): 963-70. doi: 10.1016/0002-9343(78)90748-9.
  57. Combs S.A., Teixeira J.P., Germain M.J. Pruritus in Kidney Disease. Seminars in nephrology. 2015; 35(4): 383-391. doi: 10.1016/j.semnephrol.2015.06.009.
  58. Sheppard AJ., Pennington JA.T., Weihrauch J.L. Analysis and distribution of vitamin E in vegetable oils and foods. In: Packer L., Fuchs J., editors. Vitamin E in health and disease. Marcel Dekker, Inc.; New York: 1993:9-31.
  59. Boccardi V., Baroni M., Mangialasche F., Mecocci P. Vitamin E family: Role in the pathogenesis and treatment of Alzheimer’s disease. Alzheimer’s & Dementia: Translational Research & Clinical Interventions. 2016; 2(3): 182-191. doi: 10.1016/j.trci.2016.08.002.
  60. Ulatowski L., Parker R., Warrier G., Sultana R., Butterfield D.A., Manor D. Vitamin E is essential for Purkinje neuron integrity. Neuroscience. 2014; 260: 120-129. doi: 10.1016/j.neuroscience.2013.12.001.
  61. Khanna S., Roy S., Parinandi N.L., Maurer M., Sen C.K. Characterization of the potent neuroprotective properties of the natural vitamin E alpha-tocotrienol. Journal of Neurochemistry. 2006; 98(5): 1474-86. doi: 10.1111/j.1471-4159.2006.04000.x.
  62. Sen C.K., Khanna S., Roy S., Packer L. Molecular basis of vitamin E action. Tocotrienol potently inhibits glutamate-induced pp60(c-Src) kinase activation and death of HT4 neuronal cells. Journal of Biological Chemistry. 2000; 275(17): 13049-55. doi: 10.1074/jbc.275.17.13049.
  63. Takatsu H., Owada K., Abe K., Nakano M., Urano S. Effect of vitamin E on learning and memory deficit in aged rats. Journal of Nutritional Science and Vitaminology. 2009; 55: 389-93. doi: 10.3177/jnsv.55.389.
  64. Alzoubi K.H., Khabour O.F., Rashid B.A., Damaj I.M., Salah H.A. The neuroprotective effect of vitamin E on chronic sleep deprivation-induced memory impairment: the role of oxidative stress. Behavioural Brain Research. 2012; 226(1): 205-10. doi: 10.1016/j.bbr.2011.09.017.
  65. Jeffrey G.P., Muller D.P, Burroughs A.K., Matthews S., Kemp C., Epstein O., Metcalfe T.A., Southam E., Tazir-Melboucy M., Thomas P.K., McIntyre N. Vitamin E deficiency and its clinical significance in adults with primary biliary cirrhosis and other forms of chronic liver disease. J Hepatology. 1987; 4(3): 307-317. doi: 10.1016/S0168-8278(87)80539-1.
  66. Arria A.M., Tarter R.E., Warty V., Van Thiel D.H. Vitamin E deficiency and psychomotor dysfunction in adults with primary biliary cirrhosis. The American Jounal of Clinical Nutrition. 1990; 52(2): 383-90. doi: 10.1093/ajcn/52.2.383.
  67. Choudhuri S., Cherrington N.J., Li N., Klaassen C.D. Constitutive expression of various xenobiotic and endobiotic transporter mRNAs in the choroid plexus of rats. Drug Metabolism and Disposition. 2003; 31: 1337-1345. doi: 10.1124/dmd.31.11.1337.
  68. McMillin M., Frampton G., Quinn M., Ashfaq S., de los Santos M 3rd, Grant S, DeMorrow S. Bile Acid Signaling Is Involved in the Neurological Decline in a Murine Model of Acute Liver Failure. The American Journal of Pathology. 2016; 186(2): 312-323. doi: 10.1016/j.ajpath.2015.10.005.
  69. Mertens K.L., Kalsbeek A., Soeters M.R., Eggink H.M. Bile Acid Signaling Pathways from the Enterohepatic Circulation to the Central Nervous System. Frontiers in Neuroscience. 2017; 11: 617. doi: 10.3389/fnins.2017.00617.
  70. Keitel V., Gorg B., Bidmon H.J., Zemtsova I., Spomer L., Zilles K., Haussinger D. The bile acid receptor TGR5 (Gpbar-1) acts as a neurosteroid receptor in brain. Glia. 2010; 58: 1794-1805. doi: 10.1002/glia.21049.
  71. McMillin M., DeMorrow S. Effects of bile acids on neurological function and disease. The FASEB Journal. 2016; 30(11): 3658-3668. doi: 10.1096/fj.201600275R.
  72. McNeilly A.D., Macfarlane D.P., O’Flaherty E., et al. Bile acids modulate glucocorticoid metabolism and the hypothalamic-pituitary-adrenal axis in obstructive jaundice. Journal of Hepatology. 2010; 52(5): 705-711. doi: 10.1016/j.jhep.2009.10.037.

版权所有 © Eco-Vector, 2018


 


##common.cookie##