Use of humic acids in the treatment of genitourinary diseases

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Currently, diseases of the urogenital system has acquired medical and social importance. This is primarily due to the significant prevalence of this group of diseases in the structure of general morbidity, disability, and mortality and their frequent recurrence and effect on the somatic and emotional state of the patient. In addition to socio-demographic problems, urogenital disorders have significant economic consequences. The total annual costs of treating uronephrological diseases, including accompanying therapy, are estimated at 40 billion US dollars. However, according to expert forecasts, by 2030, the prevalence of this group of diseases is expected to increase by 25%, as well as direct costs of disease treatment and indirect costs associated with partial or total disability due to disease development and premature death.

Thus, searching for and developing new drugs for the treatment of diseases of the urogenital organs are crucial. Chemical compounds, potentially significant in this aspect, can be obtained by organic synthesis and isolated from natural sources. Thus, exploring the potential of natural compounds that have high biological activity and favorable safety profile is a significant reason to realize and address this issue. An interesting but understudied groups of natural compounds of plant origin are humic substances. Recent preclinical studies have shown that they are able to exert antitumor, nephroprotective, and diuretic effects and exhibit antibacterial and antifungal properties.

This review aimed to summarize and systematize currently available information on the known pharmacological effects and possible mechanisms of action of humic acids and the prospects for their use in the treatment and prevention of genitourinary diseases.

作者简介

Nikita Benderskii

Rostov State Medical University

编辑信件的主要联系方式.
Email: cornance@yandex.ru
ORCID iD: 0000-0002-7636-1684
SPIN 代码: 5966-0480
俄罗斯联邦, Rostov-on-Don

Leila Bolurova

Rostov State Medical University

Email: balurova_l@tutanota.com
ORCID iD: 0009-0000-9265-3380
俄罗斯联邦, Rostov-on-Don

Naila Yusupova

Rostov State Medical University

Email: nailyayusupova2000@mail.ru
ORCID iD: 0009-0004-5474-2111
俄罗斯联邦, Rostov-on-Don

Daria Berezovskaya

Rostov State Medical University

Email: golub_dv@tuta.io
ORCID iD: 0009-0005-1813-0895
俄罗斯联邦, Rostov-on-Don

Elizaveta Popova

Rostov State Medical University

Email: lizapopovliza@yandex.ru
ORCID iD: 0009-0001-0315-7199
俄罗斯联邦, Rostov-on-Don

Grigory Yakovlev

Rostov State Medical University

Email: kislovodskcity2017@gmail.com
ORCID iD: 0009-0002-7748-2696
俄罗斯联邦, Rostov-on-Don

Maxim Gaivorontsev

Rostov State Medical University

Email: gaivorontsev@keemail.me
ORCID iD: 0009-0007-9072-2005
俄罗斯联邦, Rostov-on-Don

Yana Khodosenko

Rostov State Medical University

Email: bumzbiz229@gmail.com
ORCID iD: 0009-0003-4502-9851
俄罗斯联邦, Rostov-on-Don

Inna Dzhemoldinova

Rostov State Medical University

Email: innadzhy@gmail.com
俄罗斯联邦, Rostov-on-Don

参考

  1. Dirks J, Remuzzi G, Horton S, et al. Diseases of the kidney and the urinary system. Jamison DT, Breman JG, Measham AR, et al., editors. In: Disease control priorities in developing countries. 2nd edition. Washington: The International Bank for Reconstruction and Development; 2006.
  2. Stamm WE, Norrby SR. Urinary tract infections: disease panorama and challenges. J Infect Dis. 2001;183 Suppl. 1:S1–S4. doi: 10.1086/318850
  3. Bergeron-Boucher MP, Aburto JM, van Raalte A. Diversification in causes of death in low-mortality countries: emerging patterns and implications. BMJ Glob Health. 2020;5(7):e002414. doi: 10.1136/bmjgh-2020-002414
  4. World Health Organization. The Global Burden of Disease: 2004 Update. Geneva: World Health Organization; 2004. 146 p.
  5. Zhu C, Wang DQ, Zi H, et al. Epidemiological trends of urinary tract infections, urolithiasis and benign prostatic hyperplasia in 203 countries and territories from 1990 to 2019. Mil Med Res. 2021;8(1):64. doi: 10.1186/s40779-021-00359-8
  6. Zi H, He SH, Leng XY, et al. Global, regional, and national burden of kidney, bladder, and prostate cancers and their attributable risk factors, 1990–2019. Mil Med Res. 2021;8(1):60. doi: 10.1186/s40779-021-00354-z
  7. Luyckx VA, Tonelli M, Stanifer JW. The global burden of kidney disease and the sustainable development goals. Bull World Health Organ. 2018;96(6):414D–422D. doi: 10.2471/BLT.17.206441
  8. Kim MM, Harvey J, Gusev A, et al. A scoping review of the economic burden of non-cancerous genitourinary conditions. Urology. 2022;166:29–38. doi: 10.1016/j.urology.2021.10.008
  9. Litwin MS, Saigal CS, editors. Urologic diseases in America. Washington: US Government Printing Office; 2012.
  10. Orlov DS. Humic substances in the biosphere. Sorosovskij obrazovatel'nyj zhurnal. 1997;3(2):56–63. (In Russ).
  11. Perminova IV. Analysis, classification and prediction of the properties of humic acids [dissertation]. Moscow; 2000. Available from: http://mgumus.chem.msu.ru/publication/01-titul.pdf (In Russ). EDN: QDGUCR
  12. Avvakumova NP. Composition and biological properties of humic acids in peloids: fundamental and applied aspects [dissertation]. Samara; 2003. Available from: http://dlib.rsl.ru/rsl01002000000/rsl01002606000/rsl01002606904/rsl01002606904.pdf (In Russ). EDN: QDWDPZ
  13. Danchenko NN. Functional composition of humic acids: definition and relationship to reactivity [dissertation]. Moscow; 1997. Available from: http://www.mgumus.chem.msu.ru/researches/Avtoreferaty/danchenko-diss.pdf (In Russ).
  14. Aleksandrova LN. Soil organic matter and its transformation processes. Leningrad: Nauka. Leningradskoe otdelenie; 1980. (In Russ).
  15. Kononova MM. The problem of soil humus and modern tasks of its study. Moscow: Izdatel’stvo Akademii nauk SSSR; 1951. (In Russ). EDN: ZBEAOT
  16. Lishtvan II, Kruglickij NN, Tretinnik VU. Physicochemical mechanics of humic substances. Minsk: Nauka i tekhnika; 1976. (In Russ).
  17. Orlov DS. Humic acids of soils and the general theory of humification. Moscow: Izdatel’stvo MGU; 1990. (In Russ).
  18. Zhdanova AV. Study of structural components and physicochemical properties of humic substances of low-mineralized silt sulfide muds as a source of antioxidant drugs [dissertation]. Samara; 2011. Available from: http://dlib.rsl.ru/rsl01004000000/rsl01004846000/rsl01004846945/rsl01004846945.pdf (In Russ). EDN: QFJRPH
  19. Avvakumova NP, Glubokova MN, Zhdanova AV, et al. Optimization of humic acids dialysis. Izvestiya Samarskogo nauchnogo centra RAN. 2009;11(1-6):1256–1258. EDN: MCLCFH
  20. Murbach TS, Glávits R, Endres JR, et al. A toxicological evaluation of a fulvic and humic acids preparation. Toxicol Rep. 2020;7: 1242–1254. doi: 10.1016/j.toxrep.2020.08.030
  21. Gandy JJ, Meeding JP, Snyman JR, et al. Phase 1 clinical study of the acute and subacute safety and proof-of-concept efficacy of carbohydrate-derived fulvic acid. Clin Pharmacol. 2012;4:7–11. doi: 10.2147/CPAA.S25784
  22. Gnananath K, Nataraj KS, Rao BG, et al. Exploration of fulvic acid as a functional excipient in line with the regulatory requirement. Environ Res. 2020;187:109642. doi: 10.1016/j.envres.2020.109642
  23. Dai C, Xiao X, Yuan Y, et al. A comprehensive toxicological assessment of fulvic acid. Evid Based Complement Alternat Med. 2020;2020:8899244. doi: 10.1155/2020/8899244
  24. Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol. 2015;13(5):269–284. doi: 10.1038/nrmicro3432
  25. Ronald A. The etiology of urinary tract infection: traditional and emerging pathogens. Am J Med. 2002;113 Suppl. 1A:14S–19S. doi: 10.1016/s0002-9343(02)01055-0
  26. Paul R. State of the globe: rising antimicrobial resistance of pathogens in urinary tract infection. J Glob Infect Dis. 2018;10(3): 117–118. doi: 10.4103/jgid.jgid_104_17
  27. Li X, Fan H, Zi H, et al. Global and regional burden of bacterial antimicrobial resistance in urinary tract infections in 2019. J Clin Med. 2022;11(10):2817. doi: 10.3390/jcm11102817
  28. Tadigieva NZ, Coj EG, Turovskaya SI. Antibacterial activity of humic preparation from medicinal peat mud Dzhelal. Biologicheskie nauki. 1991;(10):109–113. (In Russ).
  29. Krasnikova ES, Pavlenko VV, Matrenov IS. Study of bactericidal and fungicidal activity of the supplementary feed based on humic acids. Uchenye zapiski Kazanskoj gosudarstvennoj akademii veterinarnoj mediciny im. N.E Baumana. 2019;239(3):158–160. EDN: CDNJRW doi: 10.31588/2413-4201-1883-239-3-158-160
  30. Verrillo M, Salzano M, Meo VD, et al. Antibacterial and antioxidant properties of humic substances from composted agricultural biomasses. Chemical and Biological Technologies in Agriculture. 2022;9(1):28. doi: 10.1186/s40538-022-00291-6
  31. Patent US 9265744B2. Leivers SW, Warn P. Fulvic acid and antibiotic combination for the inhibition or treatment of multi-drug resistant bacteria. United States, 2016. Available from: https://patents.google.com/patent/EP2822551B1/es
  32. Zhao Y, Paderu P, Delmas G, et al. Carbohydrate-derived fulvic acid is a highly promising topical agent to enhance healing of wounds infected with drug-resistant pathogens. J Trauma Acute Care Surg. 2015;79(4 Suppl. 2):S121–S129. doi: 10.1097/TA.0000000000000737
  33. Gorovaya AI, Orlov DS, Shcherbenko OV. Humic substances. Construction, functions, mechanism of action, protective properties, ecological role. Kiev: Naukova dumka; 1995. (In Russ).
  34. Popov AI, Zelenkov VN, Teplyakova TV. Biological activity and biochemistry of humic substances. Part 2. Medico-biological aspect (a review). Vestnik Rossijskoj Akademii estestvennyh nauk. 2016;(5):9–16.
  35. Man D, Pisarek I, Braczkowski M, et al. The impact of humic and fulvic acids on the dynamic properties of liposome membranes: the ESR method. J Liposome Res. 2014;24(2):106–112. doi: 10.3109/08982104.2013.839998
  36. de Wit H. Proton and metal ion binding to humic substances. Wageningen: Wageningen University and Research; 1992.
  37. de Melo BA, Motta FL, Santana MH. Humic acids: structural properties and multiple functionalities for novel technological developments. Mater Sci Eng C Mater Biol Appl. 2016;62:967–974. doi: 10.1016/j.msec.2015.12.001
  38. Mikhnevich TA, Vyatkina Turkova AV, Grigorenko VG, et al. Inhibition of class A β-lactamase (TEM-1) by narrow fractions of humic substances. ACS omega. 2021;6(37):23873–23883. doi: 10.1021/acsomega.1c02841
  39. Kravtsova D, Cherkasova T, Rubtsova M, et al. Humic substances potentiate inhibitory activity of sulbactam with respect to β-lactamase TEM-1. In: Perminova I, editors. Fifth International Conference of CIS IHSS on Humic Innovative Technologies «Humic substances and living systems» (HIT-2019); 2019 October 19–23; Moscow, Russia. Moscow: Desktop publishing by Alexander Polyakov; 2019. P. 105. doi: 10.36291/HIT.2019.kravtsova.093
  40. Dias V. Candida species in the urinary tract: is it a fungal infection or not? Future Microbiol. 2020;15:81–83. doi: 10.2217/fmb-2019-0262
  41. Sobel JD, Fisher JF, Kauffman CA, Newman CA. Candida urinary tract infections-epidemiology. Clin Infect Dis. 2011;52 Suppl. 6: S433–S436. doi: 10.1093/cid/cir109
  42. Carvalho M, Guimarães CM, Mayer JR Jr, et al. Hospital-associated funguria: analysis of risk factors, clinical presentation and outcome. Braz J Infect Dis. 2001;5(6):313–318. doi: 10.1590/s1413-86702001000600004
  43. Sobel JD, Vazquez JA. Fungal infections of the urinary tract. World J Urol. 1999;17(6):410–414. doi: 10.1007/s003450050167
  44. Rafal’skij VV. Clinical significance and therapy of candiduria. Clinical Microbiology and Antimicrobial Chemotherapy. 2001;3(1): 22–27. (In Russ). EDN: VXFOSP
  45. Beloborodov VB, Sinyakova LA. Nosocomial candiduria: algorithm of diagnosis and treatment. Consilium medicum. 2003;5(7):380–384. (In Russ). EDN: UDFXAH
  46. Rex JH, Walsh TJ, Sobel JD, et al. Practice guidelines for the treatment of candidiasis. Infectious Diseases Society of America. Clin Infect Dis. 2000;30(4):662–678. doi: 10.1086/313749
  47. Kauffman CA. Diagnosis and management of fungal urinary tract infection. Infect Dis Clin North Am. 2014;(28):61–74. doi: 10.1016/j.idc.2013.09.004
  48. Achkar JM, Fries BC. Candida infections of the genitourinary tract. Clin Microbiol Rev. 2010;23(2):253–273. doi: 10.1128/CMR.00076-09
  49. Sherry L, Murray C, Ramage G. Carbohydrate derived fulvic acid (CHD-FA) is a novel antifungal product: category: scientific free paper. Journal of Infection. 2011;63(6):e99. doi: 10.1016/j.jinf.2011.04.168
  50. Patent US 6569900B1. Dekker J, Medlen CE. Fulvic acid and its use in the treatment of candida infections. United States, 2003. Available from: https://patents.google.com/patent/US6569900B1/en
  51. Nivetha M, Sujatha S. Phytochemical analysis, antibacterial, antifungal and antiinflammatory activity of humic acid. International Journal of Research and Analytical Reviews. 2019;6(1):853–858.
  52. Sherry L, Jose A, Murray C, et al. Carbohydrate derived fulvic acid: an in vitro investigation of a novel membrane active antiseptic agent against Candida albicans biofilms. Front Microbiol. 2012;3:116. doi: 10.3389/fmicb.2012.00116
  53. Antoni S, Ferlay J, Soerjomataram I, et al. Bladder cancer incidence and mortality: a global overview and recent trends. Eur Urol. 2017;71(1):96–108. doi: 10.1016/j.eururo.2016.06.010
  54. Wang L, Lu B, He M, et al. Prostate cancer incidence and mortality: global status and temporal trends in 89 countries from 2000 to 2019. Front Public Health. 2022;10:811044. doi: 10.3389/fpubh.2022.811044
  55. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. doi: 10.3322/caac.21660
  56. Şekerler T, Mısırlı D, Özsavcı D, et al. Paradoxical role of humic acid in some of cancer cell lines. Febs Journal. 2016;283(1):416. doi: 10.1111/febs.13808-416
  57. Jayasooriya RGPT, Dilshara MG, Kang CH, et al. Fulvic acid promotes extracellular anti-cancer mediators from RAW 264.7 cells, causing to cancer cell death in vitro. Int Immunopharmacol. 2016;36:241–248. doi: 10.1016/j.intimp.2016.04.029
  58. Aydin SK, Dalgic S, Karaman M, et al. Effects of fulvic acid on different cancer cell lines. Proceedings. 2017;1(10):1031. doi: 10.3390/proceedings1101031
  59. Kloskowski T, Szeliski K, Krzeszowiak K, et al. Mumio (Shilajit) as a potential chemotherapeutic for the urinary bladder cancer treatment. Sci Rep. 2021;11(1):22614. doi: 10.1038/s41598-021-01996-8
  60. Schepetkin IA, Khlebnikov AI, Ah SY, et al. Characterization and biological activities of humic substances from mumie. J Agric Food Chem. 2003;51(18):5245–5254. doi: 10.1021/jf021101e
  61. Brüne B. Nitric oxide: NO apoptosis or turning it ON? Cell Death Differ. 2003;10(8):864–869. doi: 10.1038/sj.cdd.4401261
  62. Hseu YC, Huang HW, Wang SY, et al. Humic acid induces apoptosis in human endothelial cells. Toxicol Appl Pharmacol. 2002;182(1):34–43. doi: 10.1006/taap.2002.9429
  63. Salehi M, Piri H, Farasat A, et al. Activation of apoptosis and G0/G1 cell cycle arrest along with inhibition of melanogenesis by humic acid and fulvic acid: BAX/BCL-2 and Tyr genes expression and evaluation of nanomechanical properties in A375 human melanoma cell line. Iran J Basic Med Sci. 2022;25(4):489–496. doi: 10.22038/IJBMS.2022.60651.13444
  64. Pant K, Gupta P, Damania P, et al. Mineral pitch induces apoptosis and inhibits proliferation via modulating reactive oxygen species in hepatic cancer cells. BMC Complement Altern Med. 2016;16:148. doi: 10.1186/s12906-016-1131-z
  65. Dubishchev AV, Zaitceva EN, Makarenko NV. The mechanism of action of humic acids on excretory function of kidneys in norm and at the gentamycin nephropathy. Ukraїns’kij bіofarmacevtichnij zhurnal. 2014;(5):13–15. EDN: THZAYT
  66. Slobodyan EI, Kaladze NN, Govdalyuk AL, Kulik EI. The nephroprotective potential of peloid therapy used for the rehabilitation of the patients presenting with chronic pyelonephritis. Problems of Balneology, Physiotherapy, and Exercise Therapy. 2017;94(3):62–68. EDN: ZFHVGF doi: 10.17116/kurort201794362-68
  67. Menshih LE, Dubishchev AV. Humic acids as the factor of protection against gentamycin nephrotoxical action. Izvestiya Samarskogo nauchnogo centra Rossijskoj akademii nauk. 2011; 13(1-8):2021–2025. EDN: PUPFYP
  68. Dubishchev AV, Menshih LE. Research of influence the humin substances of peloids on excretory function of nephros. Izvestiya Samarskogo nauchnogo centra Rossijskoj akademii nauk. 2010; 12(1-8):2023–2026. EDN: NDYHED
  69. Makarenko N, Zajceva E, Dubishchev A, Andriyanov D. The study of acute toxicity and diuretic activity of metal derivatives of humic, fulvic, and humus acids. Izvestiya Samarskogo nauchnogo centra Rossijskoj akademii nauk. 2015;17(5-3):925–929. EDN: WFCBDV
  70. Makarenko N, Zajceva E, Dubishchev A. Analysis of the influence of magnesium, calcium and manganese fulvates on the excretory function of kidneys. Izvestiya Samarskogo nauchnogo centra Rossijskoj akademii nauk. 2015;17(2-2):273–278. EDN: UHUHKF
  71. Akbas A, Silan C, Gulpinar MT, et al. Renoprotective effect of humic acid on renal ischemia-reperfusion injury: an experimental study in rats. Inflammation. 2015;38(6):2042–2048. doi: 10.1007/s10753-015-0185-2

版权所有 © Eco-Vector, 2024


 


##common.cookie##