🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Joint channel estimation and data detection in MIMO-OFDM using distributed compressive sensing


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Channel impulse response of a multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) channel contains a smaller number of nonzero components. In addition, locations of nonzero taps coincide in delay domain. So channel impulse responses can be modeled into an approximately group sparse signals. In this work we use extended sparse Bayesian learning (ESBL), a new method for multichannel compressive sensing for channel estimation in MIMO-OFDM. In joint extended sparse Bayesian learning (JESBL), both pilot and data subcarriers are utilized for channel estimation. These methods can reduce the number of pilot subcarriers in OFDM and improve the spectral efficiency of the MIMO-OFDM system.

About the authors

K. Charly Jomon

IES College of Engineering

Author for correspondence.
Email: jomonkcharly@gmail.com
India, Kerala

S. Prasanth

Royal College of Engineering and Technology

Email: jomonkcharly@gmail.com
India, Akkikavu

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Allerton Press, Inc.