🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Peculiarities of finding characteristic functions of the generating process in the model of stationary linear AR(2) process with negative binomial distribution


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The linear random AR(2) autoregressive process having the negative binomial distribution has been considered. It has the form ξt + a1ξt-1 + a2ξt-2 = ςt, tZ, where {a1, a2 ≠ 0} are the autoregressive parameters; Z = {...,-1,0,1,...} is the sequence of integers; {ξt,tZ} is the random process with discrete time and independent values having the infinitely divisible distribution law that is called generating process. The method of finding the characteristic function of the generating process for linear autoregressive process having negative binomial distribution is presented. This inverse problem is solved by using properties of the characteristic function of stationary linear autoregressive process that can be presented in the Kolmogorov canonical form and as a linear stationary autoregressive process. An example of finding the Poisson spectrum of jumps and the characteristic function for the linear second order autoregressive process (AR(2)) with negative binomial distribution has been also presented.

Авторлар туралы

V. Zvarich

Institute of Electrodynamics of NAS of Ukraine

Хат алмасуға жауапты Автор.
Email: zvaritch@nas.gov.ua
Украина, Kyiv

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Allerton Press, Inc., 2016