Methacrylate Redox Systems of Anaerobic Bacteria

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The review analyzes current information about the anaerobic type of respiration using a non-natural methacrylate compound as an electron acceptor. Both the methacrylate redox systems themselves and the anaerobic bacteria in whose cells they are found are considered. These complexes consist of flavin-containing reductase and multiheme cytochrome(s) c3. The genes of the components of the methacrylate redox systems of different microorganisms are homologous and are organized into one operon. Methacrylate-reducing activity is determined in the periplasm. The only known bacterial acrylate reductase that reduces the natural compound differs from methacrylate redox systems. The physiological role, origin, and research perspectives for this unique enzyme system are discussed.

作者简介

O. Arkhipova

Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: aroksan@gmail.com
Russia, 142290, Pushchino

参考

  1. Arkhipova O.V., Akimenko V.K. // Microbiology (Moscow). 2005. V. 74. P. 629–639.
  2. Hess V., González J.M., Parthasarathy A., Buckel W., Müller V. // Appl. Environ. Microbiol. 2013. V. 79. P. 1942–1947.
  3. Hägerhäll C. // Biochim. Biophys. Acta. 1997. V. 1320. P. 107–141.
  4. Kröger A., Biel S., Simon J., Gross R., Unden G., Lancaster C.R.D. // Biochim. Biophys. Acta. 2002. V. 1553. P. 23–38.
  5. Iverson T. // Biochim. Biophys. Acta. 2013. V. 1827. P. 648–657.
  6. Morris C.J., Black A.S., Pealing S.L., Manson F.D.C., Chapman S.K., Reid G.A., Gibson D.M., Ward F.B. // Biochem. J. 1994. V. 302. P. 587–593.
  7. Pealing S.L., Black A.S., Manson F.D.C., Ward F.D., Chapman S.K., Read G.A. // Biochemitry. 1992. V. 32. № 48. P. 12132–12140.
  8. Pealing S.L., Cheesman M.R., Reid G.A., Thomson A.J., Ward F.B., Chapman S.K. // Biochemistry. 1995. V. 34. № 18. P. 6153–6158.
  9. Reid G.A., Miles C.S., Moysey R.K., Pankhurst K.L., Chapman S.K. // BBA. 2000. V. 1459. № 2-3. P. 310–315.
  10. Arkhipova O.V., Biryukova E.N., Abashina T.N., Khokhlova G.V., Ashin V.V., Mikoulinskaia G.V. // Microbiology (Moscow). 2019. V. 88. № 2. P. 137–145.
  11. Mikoulinskaia (Arkhipova) O., Akimenko V., Galushko A., Thauer R.K., Hedderich R. // Eur. J. Biochem. 1999. V. 263. № 2. P. 346–352.
  12. Gross R., Simon J., Kröger A. // Arch. Microbiol. 2001. V. 176. P. № 4. P. 310–313.
  13. Simon J., Gross R., Klimmek O., Ringel M., Kröger A. // Arch. Microbiol. 1998. V. 169. № 5. P. 424–433.
  14. Bogachev A.V., Bertsova Y.V., Bloch D.A., Verkhovsky M.I. // Mol. Microbiol. 2012. V. 86. № 6. P. 1452–1463.
  15. Venskutonytė R., Koh A., Stenström O., Khan M.T., Lundqvist A., Akke M., et al. // Nat. Commun. 2021. V. 12. № 1. 1347. https://doi.org/10.1038/s41467-021-21548-y
  16. Curson A.R.J., Todd J.D., Sullivan M.J., Johnston A.W.B. // Nat. Rev. Microbiol. 2011. V. 9. № 12. P. 849–859.
  17. Curson A.R.J., Burns O.J., Voget S., Daniel R., Todd J.D., McInnis K., Wexler M., Johnston A.W.B. // PLoS One. 2014. V. 9. № 5. e97660.
  18. Van der Maarel M.J.E.C., van Bergeijk S., van Werkhoven A.F., Laverman A.M., Meijer W.G., Stam W.T., Hansen T.A. // Arch. Microbiol. 1996. V. 166. P. 109–115.
  19. Bertsova Y.V., Serebryakova M.V., Baykov A.A., Bogachev A.V. // Appl. Environ. Microbiol. 2022. V. 88. № 11. https://doi.org/10.1128/aem.00519-22
  20. Aberhart D.J., Tann C.-H. // J. Chem. Soc., Perkin Trans. 1. 1979. V. 4. P. 939–942.
  21. O’Hagan D., Rogers S.V., Duffin G.R., Reynolds K.A. // J. Antibiot. 1995. V. 48. № 11. P. 1280–1287.
  22. Stickler M, Rhein T. Polymethacrylates. // Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH Verlag GmbH & Co., 2012. V. 29. P. 342–353.
  23. Greim H., Ahlers J., Bias R., Broecker B., Hollander H., Gelbke H.P. et al. // Chemosphere. 1995. V. 31. № 2. P. 2637–2659.
  24. Piirilä P., Hodgson U., Estlander T., Keskinen H., Saalo A., Voutilainen R., Kanerva L. // Int Arch. Occup. Environ. Health. V. 75. № 4. P. 209–216.
  25. Albertini R.J. // Regul. Toxicol. Pharmacol. 2017. V. 84. P. 77–93.
  26. Kimber I., Pemberton M.A. // Regul. Toxicol. Pharmacol. 2014. V. 70. № 1. P. 24–36.
  27. Krifka S., Spagnuolo G., Schmalz G., Schweikl H. // Biomaterials. 2013. V. 34. № 19. P. 4555–4563.
  28. Walters G.I., Robertson A.S., Moore V.C., Burge P.S. // Occup. Med. 2017. V. 67. № 4. P. 282–289.
  29. Галушко А.С., Микулинская (Архипова) О.В., Лауринавичюс К.С., Образцова А.Я., Акименко В.К. // Микробиология. 1996. Т. 65. № 4. С. 495–498.
  30. Baar C., Eppinger M., Raddatz G., Simon J., Lanz C., Klimmek O. et al. // PNAS. 2003. V. 100. № 20. P. 11690–11695.
  31. Thomas S.H., Wagner R.D., Arakaki A.K., Skolnick J., Kirby J.R., Shimkets L.J., Sanford R.A., Löffler F.E. // PLoS One. 2008. V. 3. № 5. e2103. https://doi.org/10.1371/journal.pone.0002103
  32. Kiss H., Lang E., Lapidus A., Copeland A., Nolan M., Del Rio T.G. et al. // Stand. Genomic Sci. 2010. V. 2. P. 270–279.
  33. Methè B.A., Nelson K.E., Eisen J.A., Paulsen I.T., Nelson W., Heidelberg J.F. et al. // Science. 2003. V. 302. № 5652. P. 1967–1969.
  34. Fernandes T.M., Morgado L., Turner D.L., Salgueiro C.A. // Antioxidants. 2021. V. 10. № 844. https://doi.org/10.3390/antiox10060844
  35. Wolin M.J., Wolin E.A., Jacobs N.J. // J. Bacteriol. 1961. V. 81. № 6. P. 911–917.
  36. Kafkewitz D., Goodman D. // Appl. Microbiol. 1974. V. 27. № 1. P. 206–209.
  37. Smibert R.M., Holdeman L.V. // J. Clin. Microbiol. 1976. V. 3. № 4. P. 432–437.
  38. Kröger A. // Diversity of Bacterial Respiratory Systems. V. 2. Boca Raton: CRC Press, 1980. P. 1–18.
  39. Tanner A.C.R., Badger S., Lai C.-H., Listgarten M.A., Visconti R.A., Socransky S.S. // Int. J. Syst. Evol. Microbiol. 1981. V. 31. № 4. P. 432–445.
  40. Simon J. // FEMS Microbiol. Rev. 2002. V. 26. P. 285–309.
  41. Sanford R.A., Cole J.R., Tiedje J.M. // Appl. Environ. Microbiol. 2002. V. 68. № 2. P. 893–900.
  42. Sanford R.A., Wagner D.D., Wu Q., Chee-Sanford J.C., Thomas S.H., Cruz-García C. et al. // Proc. Nat. Acad. Sci. U S A. 2012. V. 109. № 48. P. 19709–19714.
  43. He Q., Sanford R.A. // Appl. Environ. Microbiol. 2003. V. 69. № 5. P. 2712–2718.
  44. Wu Q., Sanford R.A., Löffler F.E. // Appl. Environ. Microbiol. 2006. V. 72. № 5. P. 3608–3614.
  45. He Q., Yao K. // Bioresour. Technol. 2010. V. 101. № 10. P. 3760–3764.
  46. Li Q., Bu C., Ahmad H.A., Guimbaud C., Gao B., Qiao Z. et al. // Environ. Sci. Pollut. Res. Int. 2021. V. 28. № 4. P. 4749–4761.
  47. Zhang T., Zhuang X., Ahmad S., Lee T., Cao C., Ni·S.‑Q. // Environ. Sci. Pollut. Res. Int. 2022. V. 29. № 16. P. 23823–23833.
  48. Li Y., Guo L., Yang R., Yang Z., Zhang H., Li Q. et al. // J. Hazard. Mater. 2023. V. 443. 130220.
  49. Myhr S., Torsvik T. // Int. J. Syst. Evol. Microbiol. 2000. V. 50. P. 1611–1619.
  50. Denton K., Atkinson M.M., Borenstein S.P., Carlson A., Carroll T., Cullity K. et al. // Arch. Microbiol. 2013. V. 195. № 9. P. 661–670.
  51. Lovley D.R., Walker D.J.F. // Front. Microbiol. 2019. V. 10. P. 1–18. Article 2078. https://doi.org/10.3389/fmicb.2019.02078
  52. Edwards M.J., Richardson D.J., Paquete C.M., Clarke T.A. // Protein Sci. 2020. V. 29. № 4. P. 830–842.
  53. Giese B., Karamash M., Fromm K.M. // FEBS Lett. 2023. V. 597. № 1. P. 166–173.
  54. Walker D.J.F., Nevin K.P., Holmes D.E., Rotaru A.-E., Ward J.E., Woodard T.L. et al. // The ISME J. 2020. V. 14. P. 837–846.
  55. Morita M., Malvankar N.S., Franks A.E., Summers Z.M., Giloteaux L., Rotaru A.E., Lovley D.R. // mBio. 2011. V. 2. № 4. e00159–11. https://doi.org/10.1128/mBio.00159-11
  56. Rotaru A.-E., Shrestha P.M., Liu F., Shrestha M., Shrestha D., Embree M. et al. // Energy Environ. Sci. 2014. V. 7. P. 408–415.
  57. Holmes D.E., Shrestha P.M., Walker D.J.F., Dang Y., Nevin K.P., Woodard T.L., Lovley D.R. // Appl. Environ. Microbiol. 2017. V. 83. № 9. e00223–17. https://doi.org/10.1128/ AEM.00223-17
  58. Lovley D.R. // Environ. Microbiol. Rep. 2011. V. 3. № 1. P. 27–35.
  59. Lovley D.R. // Bioresour Technol. 2022. V. 345. 126553. https://doi.org/10.1016/j.biortech.2021.126553
  60. Logan B. // Nat. Rev. Microbiol. 2009. V. 7. P. 375–383.
  61. Hu Y., Wang Y., Han X., Shan Y., Li F., Shi L. // Front. Bioeng. Biotechnol. 2021. V. 9. Article: 786416. https://doi.org/10.3389/fbioe.2021.786416
  62. Shi M., Jiang Y., Shi L. // Sci. China. Tech. Sci. 2019. V. 62. № 10. P. 1670–1678.
  63. Richter K., Schicklberger M., Gescher J. // Appl. Environ. Microbiol. 2012. V. 78. № 4. P. 913–921.
  64. Shu C., Zhu Q., Xiao K., Hou Y., Ma H., Ma J., Sun X. // Biomed. Res. Int. 2019. Article ID 6151587. P. 1–12. https://doi.org/10.1155/2019/6151587
  65. Tabares M., Dulay H., Reguera G. // Trends Microbiol. 2020. V. 28. № 4. P. 327–328.
  66. Liu X., Walker D.J.F, Nonnenmann S.S., Sun D., Lovley D.R. // mBio. 2021. V. 12. № 4.https://doi.org/10.1128/mBio.02209-21
  67. Lovley D.R., Holmes D.E. // Nat. Rev. Microbiol. 2022. V. 20. P. 5–19.
  68. Wang F., Craig L., Liu X., Rensing C., Egelman E.H. // Trends Microbiol. 2023. V. 3. № 4. P. 384–392. https://doi.org/10.1016/j.tim.2022.11.004
  69. Caccavo F.J.R., Lonergan D.J., Lovley D.R., Davis M., Stolz J.F., McInerney M.J. // Appl. Environ. Microbiol. 1994. V. 60. № 10. P. 3752–3759.
  70. Mollaei M., Timmers P.H.A., Suarez-Diez M., Boeren S., Van Gelder A.H., Stams A.J.M., Plugge C.M. // Environ. Microbiol. 2021. V. 23. № 1. P. 299–315.
  71. Galushko A.S., Obraztsova A.Ya., Shtarkman N.B., Laurinavichus K.S., Akimenko V.K. // Dokl. Biol. Sci. 1994. V. 335. P. 122‒123.
  72. Штаркман Н.Б., Лауринавичюс К.С., Акименко В.К. // Микробиология. 1992. Т. 61. № 4. С. 709–716.
  73. Штаркман Н.Б., Образцова А.Я., Лауринавичюс К.С., Галушко А.С., Акименко В.К. // Микробиология. 1995. Т. 64. № 2. С. 270–274.
  74. Galushko A.S., Schink B. // Arch. Microbiol. 2000. V. 174. № 5. P. 314–321.
  75. Kaden J., Galushko A.S., Schink B. // Arch. Microbiol. 2002. V. 178. № 1. P. 53–58.
  76. Arkhipova O.V., Chuvochina M.S., Trutko S.M. // Microbiology. 2009. V. 78. № 3. P. 296–303.
  77. Arkhipova O.V., Meer M., Mikoulinskaia G.V., Zakharova M.V., Galushko A.S., Akimenko V.K., Kondrashov F.A. // PLoS One. 2015. V. 10. № 5. e0125888. https://doi.org/10.1371/journal.pone.0125888
  78. Myers C.R., Myers J.M. // J. Bacteriol. 1997. V. 179. № 4. P. 1143–1152.
  79. Marritt S.J., McMillan D.G.G., Shi L., Fredrickson J.K., Zachara J.M., Richardson D.J., Jeuken L.J.C., Butt J.N. // Biochem. Soc. Trans. 2012. V. 40. № 6. P. 1217–1221
  80. Marritt S.J., Lowe T.G., Bye J., McMillan D.G.G., Shi L., Fredrickson J. et al. // Biochem. J. 2012. V. 444. № 3. P. 465–474.
  81. Schwalb C., Chapman S.K., Reid G.A. // Biochemistry. 2003. V. 42. № 31. P. 9491–9497.
  82. Alves M.N., Neto S.E., Alves A.S., Fonseca B.M., Carrêlo A., Pacheco I. et al. // Front. Microbiol. 2015. V. 6. Article 665.https://doi.org/10.3389/fmicb.2015.00665
  83. Тихонова Т.В., Попов В.О. // Успехи биологической химии. 2014. Т. 54. С. 349–384
  84. McMillan D.G.G., Marritt S.J., Butt J.N., Jeuken L.J.C. // J. Biol.Chem. 2012. V. 287. № 17. P. 14215–1425.
  85. McMillan D.G.G., Marritt S.J., Firer-Sherwood M.A., Shi L., Richardson D.J., Evans S.D. et al. // J. Am. Chem. Soc. 2013. V. 135. № 28. P. 10550–10556.
  86. Myers J.M., Myers C.R. // J. Bacteriol. 2000. V. 182. № 1. P. 67–75.
  87. Schwalb C., Chapman S.K., Reid G.A. // Biochem. Soc. Trans. 2002. V. 30. № 4. P. 658–662.
  88. Zhu T.-T., Cheng Z.-H., Yu S.-S., Li W.-W., Liu D.-F., Yu H.-Q. // Environ. Microbiol. 2022. V. 24. № 4. P. 1838–1848.
  89. Proctor L.M., Gunsalus R.P. // Environ. Microbiol. 2000. V. 2. № 4. P. 399–406.
  90. Cusanovich M.A., Meyer T.E., Bartsch R.G. // Chemistry and Biochemistry of Flavoenzymes (Muller, F., ed.). Boca Raton FL: CRC Press. 1992. V. II. P. 377–393.
  91. Cunane L.M., Chen Z.W., Durley R.C., Barton J.D., Mathews F.S. // Biochem. Soc. Trans. 1999. V. 27. № 2. P. 179–184.
  92. Gregersen L.H., Bryant D.A., Frigaard N.-U. // Front. Microbiol. 2011. V. 2. P. 116.
  93. Sousa F.M., Pereira J.G., Marreiros B.C., Pereira M.M. // BBA Bioenerg. 2018. V. 1859. № 9. P. 742–753.
  94. Paquete C.M., Louro R.O. // Dalton Trans. 2010. V. 39. № 18. P. 4259–4266.
  95. Fukumori Y., Yamanaka T. // J. Biochem. 1979. V. 85. № 6. P. 1405–1414.
  96. Sakurai H., Ogawa T., Shiga M., Inoue K. // Photosynth. Res. 2010. V. 104. № 2–3. P. 163–176.
  97. Xin Y., Gao R., Cui F., Lü C., Liu H., Liu H., Xia Y., Xuna L. // Appl. Environ. Microbiol. 2020. V. 86. № 22. e01835-20.
  98. Lü C., Xia Y., Liu D., Zhao R., Gao R., Liu H., Xuna L. // Appl. Environ. Microbiol. 2017. V. 83. № 22. e01610-17. https://doi.org/10.1128/AEM.01610-17
  99. Tikhonova T.V., Lilina A.V., Osipov E.M., Shipkov N.S., Dergousova N.I., Kulikova O.G., Popov V.O. // Biochemistry (Mosc). 2021. V. 86. № 3. P. 361–369.
  100. Nguyen P.M., Do P.T., Pham Y.B., Doan T.O., Nguyen X.C., Lee W.K. et al. // Sci. Total Environ. 2022. V. 852. 158203. https://doi.org/10.1016/j.scitotenv.2022.158203
  101. Chen Z-W., Koh M., Van Driessche G., Van Beeumen J.J., Bartsch R.G., Meyer T.E. et al. // Science. 1994. V. 266. P. 430–432.
  102. Koerber S.C., McIntire W., Bohmont C., Singer T.P. // Biochemistry. 1985. V. 24. № 19. P. 5276–5280.
  103. Gordon E.H.J., Pealing S.L., Chapman S.K., Ward F.B., Reid G.A. // Microbiology. 1998. V. 144. № 4. P. 937–945.
  104. Dobbin P.S., Butt J.N., Powell A.K., Reid G.A., Richardson D.J. // Biochem. J. 1999. V. 342. № 2. P. 439–448.
  105. Maier T.M., Myers J.M., Myers C.R. // J. Basic Microbiol. 2003. V. 43. № 4. P. 312–327.
  106. Архипова О.В., Трошина О.Ю., Микулинская Г.В. // Вестн. ТвГУ. Сер.: Биология и экология. 2017. № 2. С. 306–323.
  107. Kees E.D., Pendleton A.R., Paquete C.M., Arriola M.B., Kane A.L., Kotloski N.J. et al. // Appl. Environ. Microbiol. 2019. V. 85. № 16. https://doi.org/10.1128/AEM.00852-19

补充文件

附件文件
动作
1. JATS XML
2.

下载 (5KB)
3.

下载 (6KB)
4.

下载 (17KB)
5.

下载 (244KB)
6.

下载 (88KB)
7.

下载 (270KB)

版权所有 © О.В. Архипова, 2023

##common.cookie##