Influence of Bacterial Mutualists and Phytopatogenes on Changes in Concentrations of cAMP and H2O2 in Pea Seedles of Rondo Varieties and its Clutterless and Superclub Mutants

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Changes in the concentrations of hydrogen peroxide and cyclic adenosine monophosphate (cAMP) in the roots of seedlings of pea cv. Rondo and its supernodulating mutant Nod3 and anodulating K14 were studied during infection with Rhizobium leguminosarum bv. vicea (strain RCAM 1022) or Pseudomonas syringae pv. pisi (strain 1845). It was shown that 360 min after infection of pea seedlings of the Rondo variety, the level of endogenous hydrogen peroxide slightly differed from the control. In the roots of Nod3 seedlings, this level significantly decreased, and in the roots of K14 it significantly increased when infected with the 1845 strain, but remained unchanged when exposed to bacteria of the RCAM 1022 strain. and young root hairs of Rondo seedlings, while strain 1845 had no effect on this parameter. Both types of bacteria had no effect on the concentration of cAMP in the roots of seedlings of the Nod3 mutant, whereas in K14, under the influence of RCAM 1022, the cAMP level almost doubled, and under the influence of 1845, it decreased. It is assumed that hydrogen peroxide and cAMP may be involved in the formation of supernodulating and nodulating phenotypes of mutants, as well as in the formation of resistance to a specific pathogen, Pseudomonas syringae pv. pisi. It is possible that this phenomenon can be used to diagnose the resistance of newly created mutants and pea varieties to the blight pathogen.

作者简介

L. Lomovatskaya

Siberian Institute of Plant Physiology and Biochemistryof the Siberian Branch of RAS

编辑信件的主要联系方式.
Email: LidaL@sifibr.irk.ru
Russia, 664033, Irkutsk

O. Zakharova

Siberian Institute of Plant Physiology and Biochemistryof the Siberian Branch of RAS

Email: LidaL@sifibr.irk.ru
Russia, 664033, Irkutsk

A. Goncharova

Siberian Institute of Plant Physiology and Biochemistryof the Siberian Branch of RAS

Email: LidaL@sifibr.irk.ru
Russia, 664033, Irkutsk

A. Romanenko

Siberian Institute of Plant Physiology and Biochemistryof the Siberian Branch of RAS

Email: LidaL@sifibr.irk.ru
Russia, 664033, Irkutsk

参考

  1. Власова Е.Ю., Сидорова К.К., Гляненко М.Н., Мищенко Т.М. // Вавиловский журнал генетики и селекции. 2012. Т. 16. № 4/2. С. 879–886.
  2. Nanda A.K., Andrio E., Marino D., Pauly N., Dunand C. // J. Integrative Plant Biology. 2010. V. 52. № 2. P. 195–204.
  3. Torres M.A. // Physiologia Plantarum. 2010. V. 138. № 4. P. 414–429.
  4. Ma W., Qi Z., Smigel A., Walker R.K., Verma R., Gerald A. Berkowitz G.A. // PNAS. 2009. V. 106. № 49. P. 20995–21000.
  5. Ломоватская Л.А., Кузакова О.В., Гончарова А.М., Романенко А.С. // Физиология растений. 2020. Т. 67. № 3. С. 270–277. https://doi.org/10.1134/S0015330320020104
  6. Suzuki N., Katano K. // Front. Plant Sci. 2018. V. 9. P. 490. https://doi.org/10.3389/fpls.2018.00490
  7. Макарова Л.Е., Нурминский В.Н. // Цитология. 2005. Т. 47. № 6. С. 519–525.
  8. Ломоватская Л.А., Кузакова О.В., Романенко А.С., Гончарова А.М. // Физиология растений. 2018. Т. 65. № 4. С. 310–320.
  9. Galletti R., Denoux C., Gambetta S., Dewdney J., F.M. De Lorenzo A., Ferrari S. // Plant. Physiol. 2008. V. 148. P. 1695–1706.
  10. Звягинцев Д.Г., Бабьева И.П., Зенова Г.М. М.: Изд-во МГУ, 2005. 445 с.
  11. Bleau J.R., Spoel S.H. // Plant Physiol. 2021. V. 186. P. 53–65.
  12. Tsyganova A.V., Brewin N.J., Tsyganov V.E. // Cells. 2021. V. 10. № 1050. P. 1–32.
  13. Кузакова О.В., Ломоватская Л.А., Гончарова А.М., Романенко А.С. // Физиология растений. 2019. Т. 66. № 5. С. 360–366.
  14. Bhuvaneswari T.V., Turgeon B.G., Bauer W.D. // Plant Physiol. 1980. V. 66. № 6. P. 1027–1031.
  15. Серегина Н.В., Честнова Т.В., Жеребцова В.А., Хромушин В.А. // Вестник новых медицинских технологий. 2008. № 4. С. 75–77.
  16. Цыганова А.В., Цыганов В.Е. // Успехи современной биологии. 2012. Т. 132. № 2. С. 211–222.
  17. Вершинина З.P., Лавина А.M., Чубукова О.B. // Биомика. 2020. Т. 12. № 1. С. 27–49. https://doi.org/10.31301/2221-6197.bmcs.2020-3
  18. Жуков В.А., Рычагова Т.С., Штарк О.Ю., Борисов А.Ю., Тихонович И.А. // Экологическая генетика. 2008. Т. 6. № 4. С. 12–19.
  19. Бабоша А.В. // Журн. общей биологии. 2008. Т. 69. № 5. С. 379–396.
  20. Peleg–Grossman S., Melamed–Book N., Levine A. // Plant Signaling & Behavior. 2012. V. 7. № 3. P. 409–415.
  21. Hawkins J.P., Oresnik I.J. // Front. Plant Sci. 2022. https://doi.org/10.3389/fpls.2021.796045
  22. Bleau J.R., Spoel S.H. // Plant Physiol. 2021. V. 186. P. 53–65. https://doi.org/10.1093/plphys/kiaa088
  23. Gourion B., Berrabah F., Ratet P., Stacey G. // Trends in Plant Sci. 2015. V. 20. № 3. P. 186–194.
  24. Bolwell G.P., Bindschedler L.V., Blee K.A., Butt V.S., Davies D.R., Gardner S.L., Minibayeva F. // J. Exp. Bot. 2002. V. 53. № 372. P. 1367–1376.
  25. Ca’rdenas L., Martı’nez A., Sa’nchez F., Quinto K. // Plant J. 2008. V. 56. P. 802–813. https://doi.org/10.1111/j.1365-313X.2008.03644.x
  26. Takemoto J.Y., Zhang L., Taguchi N., Tachikawa T., Miyakawa T. // Microbiology. 1991. V. 137. № 3. P. 653–659.
  27. Ichinose Y., Taguchi F., Mukaihara T. // J. Gen. Plant Pathol. 2013. № 79. P. 285–296.
  28. Terakado J., Fujihara S., Yoneyama T. // Soil Sci. & Plant Nutr. 2003. V. 49. № 3. P. 459–462.
  29. Xu R., Guo Y., Peng S.,Liu J., Li P., Jia W., Zhao J. // Biomolecules. 2021. V. 1. P. 688. doi.org/10.3390
  30. Сидорова К.К., Шумный В.К. // Сибирский экологический журн. 1999. № 3. С. 281–288.
  31. Sabetta W., Vandelle E., Locato V., Costa A., Cimini S., Moura A.B., Luoni L., Graf A., Viggiano L., De Gara L., Bellin D., Blanco E., de Pinto. M.C. // Plant J. 2019. V. 98. P. 590–606.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (60KB)
3.

下载 (125KB)
4.

下载 (115KB)

版权所有 © Л.А. Ломоватская, О.В. Захарова, А.М. Гончарова, А.С. Романенко, 2023

##common.cookie##