Detection of “Non-culturable” Mycobacterium tuberculosis Cells by Culture Methods

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The specific features of the reactivation of “non-culturable” (NC) Mycobacterium tuberculosis (MTB) cells for the following propagation in liquid medium were defined, as well as the approach for the quantification of these cells by culture methods was suggested. When NC cells obtained in vitro were inoculated into standard Sauton’s liquid medium, a prolonged (up to 20 days) lag-phase is observed, in which no cell propagation is occurred. During the lag-phase, dormant cells secrete substances of unknown nature that inhibit or completely arrest the reactivation and growth of cultures when initial dormant cells concentration is above 107–108 cells/mL. Addition of meat-peptone broth (3.25 g/L) into a standard Sauton’s medium with a 10-fold reduced concentration of glycerol significantly stimulated the reactivation and propagation of the initially dormant cells inoculated at a concentration above the threshold. This modification of the medium composition made it possible to detect up to 103 times more cells in the MTB population by the method of the Most Probable Number (MPN) of cells. Increased number of the detected dormant cells in the population (up to an average of 2.5 orders of magnitude) was also achieved by adding to the reactivation medium recombinant protein RpfB (5 ng/mL), a protein of the Rpf family – resuscitation promoting factor of dormant bacteria. Perhaps the action of a Rpf enzyme is related to the products of its enzymatic activity, since an increased MPN value in the dormant cells population was also observed when the products of mycobacteria peptidoglycan hydrolysis obtained by the coaction of RpfB and endopeptidase RipA were added. The addition of sonicated peptidoglycan fragments at a concentration up to 1 μg/mL had a similar effect. The obtained results may be used as approaches to optimize liquid media composition and culture conditions aiming to identify in clinical samples the pathogen of tuberculosis remain in “non-culturable” state.

Sobre autores

G. Demina

Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences

Autor responsável pela correspondência
Email: Galyademina@yandex.ru
Russia, 119071, Moscow

M. Shleeva

Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences

Email: Galyademina@yandex.ru
Russia, 119071, Moscow

D. Bagaeva

Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences

Email: Galyademina@yandex.ru
Russia, 119071, Moscow

G. Vostroknutova

Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences

Email: Galyademina@yandex.ru
Russia, 119071, Moscow

A. Kaprelyants

Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences

Email: Galyademina@yandex.ru
Russia, 119071, Moscow

Bibliografia

  1. Эргешов А.Э., Черноусова Л.Н., Андреевская С.Н. // Вестник РАМН. 2019. Т. 74. № 6. С. 413–422.
  2. Shleeva M.O., Bagramyan K., Telkov M.V., Mukamolova G.V., Young M., Kell D.B., Kaprelyants A.S. // Microbiology. 2002. V. 148. № 5. P. 1581–1591.
  3. Medlar E.M., Bernstein S., Steward D.M. // Am. Rev. Tuberc. 1952. V. 66. № 1. P. 36–43.
  4. Beck F., Yegian D. // Am. Rev. Tuberc. 1952. V. 66. № 1. P. 44–51.
  5. Hobby G.L., Auerbach O., Lenert T.F., Small M.J., Comer J.V. // Am. Rev. Tuberc. 1954. V. 70. № 2. P. 191–218.
  6. Biketov S.F., Mukamolova G.V., Potapov V., Gilenkov E., Vostroknutova G.N., Kell D.B., Young M., Kaprelyants AS. // FEMS Immunol Med Microbiol. 2000. V. 29. № 4. P. 233–240.
  7. Dhillon J., Lowrie D.B., Mitchison D.A. // BMC Infect. Dis. 2004. V. 4. P. 4–7.
  8. Mukamolova G.V., Turapov O., Malkin J., Woltmann G., Barer M.R. // Am. J. Respir. Crit. Care Med. 2010. V. 181. P. 174–180.
  9. Shleeva M.O., Kudykina Y.K., Vostroknutova G.N., Suzina N.E., Mulyukin A.L., Kaprelyants A.S. // Tuberculosis (Edinb). 2011. V. 91. № 2. P. 146–154.
  10. Ghodbane R., Raoult D., Drancourt M. // Sci Rep. 2014. V. 4. P. 4236.
  11. Nikitushkin V.D., Demina G.R., Shleeva M.O., Guryanova S.V., Ruggiero A., Berisio R., Kaprelyants A.S. // FEBS J. 2015. V. 282. № 13. P. 2500–2511.
  12. Parish T., Stoker N. // Methods in molecular Biology. In Mycobacteria protocols, Humana Press, Totowa, NJ. 1998. P. 91–107.
  13. Mahapatra S., Crick D.C., McNeil M.R., Brennan P.J. // J Bacteriol. 2008. V. 190. № 2. P. 655–661.
  14. Du Bois A.B., Botelho S.Y., Bedell G.N., Marshall R., Comroe J.H. Jr. // J Clin Invest. 1956. V. 35. P. 322–326.
  15. Shleeva M.O., Kudykina Y.K., Vostroknutova G.N., Suzina N.E., Mulyukin A.L., Kaprelyants A.S. // Tuberculosis (Edinb). 2011. V. 91. № 2. P. 146–154.
  16. Mukamolova G.V., Kaprelyants A.S., Kell D.B. // Antonie Van Leeuwenhoek. 1995. V. 67. № 3. P. 289–295.
  17. Shleeva M.O., Trutneva K.A., Demina G.R., Zinin A.I., Sorokoumova G.M., Laptinskaya P.K., Shumkova E.S., Kaprelyants A.S. // Front Microbiol. 2017. V. 8. P. 524.
  18. Nikitushkin V.D., Trenkamp S., Demina G.R., Shleeva M.O., Kaprelyants A.S. // Metabolomics. 2020. V. 16. № 2. P. 24.
  19. He Z., De Buck J. // BMC Microbiol. 2010. V. 10. P. 121.
  20. Кудыкина Ю.К., Шлеева М.О., Арцатбанов В.Ю., Сузина Н.Е., Капрельянц А.С. // Микробиология. 2011. Т. 80. № 5. С. 625–636.
  21. Postgate J.R., Hunter J.R. // Nature. 1963. V. 198. P. 273.
  22. Nikitushkin V.D., Demina G.R., Shleeva M.O., Kaprelyants A.S. // Antonie Van Leeuwenhoek. 2013. V. 103. № 1. P. 37–46.
  23. Shleeva M.O., Goncharenko A.V., Kudykina Y.K., Young D., Young M, Kaprelyants A.S. // PLoS One. 2013. V. 8. № 12. e82914. https://doi.org/10.1371/journal.pone.0082914
  24. Назарова Е.В., Шлеева М.О., Морозова Н.С., Кудыкина Ю.К., Вострокнутова Г.Н., Ружицкий А.О., Селищева А.А., Сорокоумова Г.М., Швец В.И., Капрельянц А.С. // Биохимия. 2011. Т. 76. № 6. С. 781–791.
  25. Zainabadi K., Walsh K.F., Vilbrun S.C., Mathurin L.D., Lee M.H., Saito K., Mishra S., Ocheretina O., Pape J.W., Nathan C., Fitzgerald D.W. // Antimicrob. Agents Chemother. 2021 V. 65. № 8. e0060821. https://doi.org/10.1128/aac.00608-21
  26. Hett E.C., Chao M.C., Steyn A.J., Fortune S.M., Deng L.L., Rubin E.J. // Mol. Microbiol. 2007. V.66. № 3. P. 658–668.
  27. Hett E.C., Chao M.C., Deng L.L., Rubin E.J. // Plos pathogens. 2008. V. 4. № 2. e1000001. https://doi.org/10.1371/journal.ppat.1000001
  28. Ruggiero A., Marasco D., Squeglia F., Soldini S., Pedone C., Berisio R. // Structure 2010. V. 18. № 9. P. 1184–1190.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (66KB)
3.

Baixar (101KB)
4.

Baixar (124KB)
5.

Baixar (74KB)
6.

Baixar (25KB)
7.

Baixar (179KB)
8.

Baixar (25KB)
9.

Baixar (28KB)

Declaração de direitos autorais © Г.Р. Демина, М.О. Шлеева, Д.И. Багаева, Г.Н. Вострокнутова, А.С. Капрельянц, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies