Corrosive Activity of Microorganisms Isolated from Fouling of Structural Materials in the Coastal Zone of the Barents Sea

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Potentially corrosive active microorganisms isolated from structural materials with signs of biofouling on the coast of Kislaya Bay (Barents Sea, Russia) were studied: sulfate-reducing, iron-oxidizing and sulfur-oxidizing bacteria. Cultures of sulfate-reducing bacteria (Desulfovibrio sp., Halodesulfovibrio sp.), sulfur-oxidizing bacteria (Dietzia sp.), and iron-oxidizing bacteria (Pseudomonas fluorescens, Bacillus sp.) were identified on the basic of the determining the nucleotide sequences of the 16S rRNA gene. The methods of scanning electron microscopy, energy dispersive microanalysis of the chemical composition and X-ray phase analysis revealed significant changes in the structure and chemical composition of the surface layer of steel reinforcement samples exposed for 28 days in the presence of isolated microorganisms that demonstrated their active participation in corrosion processes. It has been shown that the formation of mineral analogues in corrosion products depends on the strains of studied bacteria and peculiarities of their metabolism. Sulfate-reducing bacteria isolated from the littoral zone of the Barents Sea showed the highest activity in the development of corrosion processes.

Авторлар туралы

D. Vlasov

Saint Petersburg State University, Faculty of Biology; Komarov Botanical Institute of RAS

Хат алмасуға жауапты Автор.
Email: dmitry.vlasov@mail.ru
Russia, 199034, Saint Petersburg; Russia, 197376, Saint Petersburg

A. Bryukhanov

Lomonosov Moscow State University, Faculty of Biology

Email: dmitry.vlasov@mail.ru
Russia, 119234, Moscow

G. Nyanikova

Saint Petersburg State Institute of Technology (Technical University),
Faculty of Chemical and Biotechnology

Email: dmitry.vlasov@mail.ru
Russia, 190013, Saint Petersburg

M. Zelenskaya

Saint Petersburg State University, Faculty of Biology

Email: dmitry.vlasov@mail.ru
Russia, 199034, Saint Petersburg

I. Tsarovtseva

Vedeneev All-Russian Scientific Research Institute of Hydraulic Engineering

Email: dmitry.vlasov@mail.ru
Russia, 195220, Saint Petersburg

A. Izatulina

Saint Petersburg State University, Institute of Earth Sciences

Email: dmitry.vlasov@mail.ru
Russia, 199034, Saint Petersburg

Әдебиет тізімі

  1. Beech I.B., Sunner J. // Biotechnol. 2004. V. 15. № 3. P. 181–186.
  2. Kip N., van Veen J.A. // ISME J. 2015. V. 9. № 3. P. 542–551.
  3. Bryukhanov A.L., Vlasov D.Y., Maiorova M.A., Tsarovtseva I.M. // Power Technol. Eng. 2021. V. 54. № 5. P. 609–614.
  4. Nyanikova G., Bryukhanov A., Vlasov D., Mayorova M., Nurmagomedov M., Akhaev D., Tsarovtseva I. // E3S Web Conf. 2020. V. 215. P. 1–9 (04001).https://doi.org/10.1051/e3sconf/202021504001
  5. Videla H.A., Herrera L.K. // Int. Microbiol. 2005. V. 8. № 3. P. 169–180.
  6. Ma Y., Zhang Y., Zhang R., Guan F., Hou B., Duan J. // Biotechnol. 2020. V. 104. № 2. P. 515–525.
  7. Procópio L. // World J. Microbiol. Biotechnol. 2019. V. 35. № 5. P. 73. https://doi.org/10.1007/s11274-019-2647-4
  8. Procópio L. // Arch. Microbiol. 2022. V. 204. № 2. P. 138. https://doi.org/10.1007/s00203-022-02755-7
  9. Amendola R., Acharjee A. // Front. Microbiol. 2022. V. 13. P. 806688. https://doi.org/10.3389/fmicb.2022.806688
  10. Loto C.A. // J. Adv. Manuf. Technol. 2017. V. 92. P. 4241–4252.
  11. Bryukhanov A.L., Majorova M.A., Tsarovtseva I.M. // Limnol. Freshw. Biol. 2020. V. 3. № 4. P. 969–970.
  12. Kim B.H., Lim S.S., Daud W.R., Gadd G.M., Chang I.S. // Bioresour. Technol. 2015. V. 190. P. 395–401.
  13. Moura V., Ribeiro I., Moriggi P., Capao A., Salles C., Bitati S., Procópio L. // Arch. Microbiol. 2018. V. 200. № 10. P. 1447–1456.
  14. Enning D., Venzlaff H., Garrelfs J., Dinh H.T., Meyer V., Mayrhofer K. et al. // Environ. Microbiol. 2012. V. 14. № 7. P. 1772–1787.
  15. Etim I.N., Wei J., Dong J., Xu D., Chen N., Wei X., Su M., Ke W. // Biofouling. 2018. V. 34. № 10. P. 1121–1137.
  16. Mustin C., Berthelin J., Marion P., de Donato P. // Appl. Environ. Microbiol. 1992. V. 58. № 4. P. 1175–1182.
  17. López A.I., Marín I., Amils R. // Microbiologia. 1994. V. 10. № 1–2. P. 121–130.
  18. Inaba Y., Xu S., Vardner J.T., West A.C., Banta S. // Appl. Environ. Microbiol. 2019. V. 85. № 21. e01381–19. https://doi.org/10.1128/AEM.01381-19
  19. Huang Y., Xu D., Huang L.Y., Lou Y.T., Muhadesi J.B., Qian H.C., Zhou E.Z., Wang B.J, Li X.T., Jiang Z., Liu S.J., Zhang D.W., Jiang C.Y. // NPJ Biofilms Microbiomes. 2021. V. 7. № 1. P. 6.
  20. Emerson D. // Biofouling. 2018. V. 34. № 9. P. 989–1000.
  21. Maeda T., Negishi A., Komoto H., Oshima Y., Kamimura K., Sugio T. // J. Biosci. Bioeng. 1999. V. 88. № 3. P. 300–305.
  22. Makita H. // World J. Microbiol. Biotechnol. 2018. V. 34. № 8. P. 110.
  23. Ravenschlag K., Sahm K., Knoblauch C., Jørgensen B.B., Amann R. // Appl. Environ. Microbiol. 2000. V. 66. № 8. P. 3592–3602.
  24. Muyzer G., Stams A.J.M. // Nat. Rev. Microbiol. 2008. V. 6. № 6. P. 441–454.
  25. Hamilton W.A. // Annu. Rev. Microbiol. 1985. V. 39. P. 195–217.
  26. Dinh H.T., Kuever J., Mussmann M., Hassel A.W., Stratmann M., Widdel F. // Nature. 2004. V. 427. № 6977. P. 829–832.
  27. Enning D., Garrelfs J. // Appl. Environ. Microbiol. 2014. V. 80. № 4. P. 1226–1236.
  28. Videla H.A. // Biofouling. 2000. V. 15. № 1–3. P. 37–47.
  29. Ziadi I., Alves M.M., Taryba M., El-Bassi L., Hassairi H., Bousselmi L., Montemor M.F., Akrout H. // Bioelectrochemistry. 2020. V. 132. P. 107413.
  30. Yang S.S., Lin J.Y., Lin Y.T. // J. Microbiol. Immunol. Infect. 1998. V. 31. № 3. P. 151–164.
  31. Zhang Y., Ma Y., Duan J., Li X., Wang J., Hou B. // Biofouling. 2019. V. 35. № 4. P. 429–442.
  32. Захарова Ю.Р., Парфенова В.В. // Известия РАН. Серия Биологическая. 2007. № 3. С. 290–295.
  33. Widdel F., Bak F. The Prokaryotes. 2 Ed. / Eds. A. Balows, H.G. Trüper, M. Dworkin, W. Harder, K.-H. Schleifer. N.Y.: Springer-Verlag. 1992. V. 4. P. 3352–3378.
  34. Брюханов А.Л., Нетрусов А.И., Шестаков А.И., Котова И.Б. Методы исследования анаэробных микроорганизмов. М.: Научная библиотека МГУ, 2015. 178 с.
  35. Beijerinck M.W. // Archs. Neerrl. Science Series. 1904. V. 29. P. 131–157.
  36. Issayeva A.U., Pankiewicz R., Otarbekova A.A. // Pol. J. Environ. Stud. 2020. V. 29. № 6. P. 4101–4108.
  37. Trüper H.G., Schlegel H.G. // Antonie van Leeuwenhoek. 1964. V. 30. P. 225–238.
  38. Lane D.J. Nucleic Acid Techniques in Bacterial Systematic. / Eds. E. Stackebrandt, M. Goodfello. Chichester: John Wiley & Sons. 1991. P. 115–175.
  39. Herlemann D.P., Labrenz M., Jurgens K., Bertilsson S., Waniek J.J., Andersson A.F. // ISME J. 2011. V. 5. № 10. P. 1571–1579.
  40. Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., Madden T.L. // BMC Bioinformatics. 2009. V. 10. P. 421.
  41. Wang Q., Garrity G.M., Tiedje J.M., Cole J.R. // Appl. Environ. Microbiol. 2007. V. 73. № 16. P. 5261–5267.

Қосымша файлдар


© Д.Ю. Власов, А.Л. Брюханов, Г.Г. Няникова, М.С. Зеленская, И.М. Царовцева, А.Р. Изатулина, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>