Estimation of Conformance Bands for Linear Regression with Correlated Input Data
- Авторы: Stepanov A.V.1, Chunovkina A.G.1
-
Учреждения:
- Mendeleev All-Russia Research Institute of Metrology (VNIIM)
- Выпуск: Том 62, № 5 (2019)
- Страницы: 410-414
- Раздел: Article
- URL: https://journals.rcsi.science/0543-1972/article/view/246722
- DOI: https://doi.org/10.1007/s11018-019-01638-6
- ID: 246722
Цитировать
Аннотация
The problem of calculating the uncertainty bands for a linear regression with correlated initial data is considered. The conformance factors for regression uncertainty bands with different models of errors in the initial data are obtained by the Monte-Carlo method. The linear regression coefficients are estimated by the generalized method of least squares. The following models of measurement error are considered: Gaussian white noise, exponentially correlated noise, and flicker noise. A comparative analysis of the uncertainty bands of linear drift is conducted for these models.
Об авторах
A. Stepanov
Mendeleev All-Russia Research Institute of Metrology (VNIIM)
Email: chunovkina@vniim.ru
Россия, St. Petersburg
A. Chunovkina
Mendeleev All-Russia Research Institute of Metrology (VNIIM)
Автор, ответственный за переписку.
Email: chunovkina@vniim.ru
Россия, St. Petersburg
Дополнительные файлы
