Fast Algorithm for Choosing Kernel Function Blur Coefficients in a Nonparametric Probability Density Estimate


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A fast algorithm for choosing the blurring coefficients of kernel functions for a nonparametric probability density estimate is proposed, and its properties are investigated. The technique of interval estimation of the standard deviation of the nonparametric statistics under consideration is considered.

Sobre autores

A. Lapko

Institute of Computational Modeling, Siberian Branch of the Russian Academy of Sciences; Reshetnev Siberian State University of Science and Technology

Autor responsável pela correspondência
Email: lapko@icm.krasn.ru
Rússia, Krasnoyarsk; Krasnoyarsk

V. Lapko

Institute of Computational Modeling, Siberian Branch of the Russian Academy of Sciences; Reshetnev Siberian State University of Science and Technology

Email: lapko@icm.krasn.ru
Rússia, Krasnoyarsk; Krasnoyarsk

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2018