🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Parametric and Nonparametric Identification of the Distribution Law from Interval Data


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The properties of nonparametric estimation of the distribution function and estimations of the maximal likelihood of the parameters of distributions from interval data are considered. Samples of interval observations are required when the true value of an observation is not known, and only the interval this value belongs to is known. An investigation of the statistical properties of estimates of the distribution function and its parameters from interval data is performed by methods of statistical simulation and compared to estimates obtained from point samples of the midpoints of the observation intervals.

About the authors

S. S. Vozhov

Novosibirsk State Technical University

Email: chimitova@corp.nstu.ru
Russian Federation, Novosibirsk

E. V. Chimitova

Novosibirsk State Technical University

Author for correspondence.
Email: chimitova@corp.nstu.ru
Russian Federation, Novosibirsk

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Springer Science+Business Media, LLC, part of Springer Nature