Selection of the Blur Coefficient for Probability Density Kernel Estimates Under Conditions of Large Samples


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A fast algorithm is proposed for choosing the blur factors of kernel functions of a non-parametric probability density estimate under conditions of large-scale statistical data. It is shown that the basis of the algorithm is the result of a study of the asymptotic properties of a new kernel probability density estimate. The properties of the developed algorithm are analyzed and the method of its application is formulated.

Авторлар туралы

A. Lapko

Institute of Computational Modeling, Siberian Branch of the Russian Academy of Sciences; Reshetnev Siberian State University of Science and Technology

Хат алмасуға жауапты Автор.
Email: lapko@icm.krasn.ru
Ресей, Krasnoyarsk; Krasnoyarsk

V. Lapko

Institute of Computational Modeling, Siberian Branch of the Russian Academy of Sciences; Reshetnev Siberian State University of Science and Technology

Email: lapko@icm.krasn.ru
Ресей, Krasnoyarsk; Krasnoyarsk


© Springer Science+Business Media, LLC, part of Springer Nature, 2019

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>