Хемодивергентное Pd-катализируемое цианирование 5-иод-1,2,3-триазолов

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Проведено исследование реакции цианирования производных 2-(5-иодтриазолил)-фенилуксусных кислот в условиях палладиевого катализа. Обнаружено, что выбор источника цианид-иона позволяет влиять на хемоселективность процесса. Так, при использовании CuCN происходит лишь ожидаемое замещение иода на нитрильную группу, в то время как KCN выступает не только в роли источника цианида, но и основания, что вызывает внутримолекулярную конденсацию продукта цианирования, приводящую к образованию триазоло[1,5-a]хинолина. Разработанный подход позволяет проводить направленный синтез как 5-цианотриазолов, так и продуктов их циклизации с хорошими выходами (63—88%). Показано, что полученные триазоло[1,5-a]хинолины обладают флуоресцентными свойствами в твердом состоянии и в растворе.

Об авторах

Р. Н Галашев

Московский государственный университет им. М.В. Ломоносова, химический факультет

Москва, Россия

Г. В Латышев

Московский государственный университет им. М.В. Ломоносова, химический факультет

Москва, Россия

Ю. Н Котовщиков

Московский государственный университет им. М.В. Ломоносова, химический факультет

Email: kotovshchikov@org.chem.msu.ru
ORCID iD: 0000-0003-2103-5985
Москва, Россия

Н. В Лукашев

Московский государственный университет им. М.В. Ломоносова, химический факультет

Москва, Россия

И. П Белецкая

Московский государственный университет им. М.В. Ломоносова, химический факультет

ORCID iD: 0000-0001-9705-1434
Москва, Россия

Список литературы

  1. Scattergood P.A., Sinopoli A., Elliott P.I.P. Coord. Chem. Rev. 2017, 350, 136–154. https://doi.org/10.1016/j.ccr.2017.06.017
  2. Schulze B., Schubert U.S. Chem. Soc. Rev. 2014, 43, 2522–2571. https://doi.org/10.1039/c3cs60386e
  3. Huang D., Zhao P., Astruc D. Coord. Chem. Rev. 2014, 272, 145–165. https://doi.org/10.1016/j.ccr.2014.04.006
  4. Huo J., Hu H., Zhang M., Hu X., Chen M., Chen D., Liu J., Xiao G., Wang Y., Wen Z. RSC Adv. 2017, 7, 2281–2287. https://doi.org/10.1039/c6ra27012c
  5. Kantheti S., Narayan R., Raju K.V.S.N. RSC Adv. 2015, 5, 3687–3708. https://doi.org/10.1039/c4ra12739k
  6. Ben Nejma A., Znati M., Daich A., Othman M., Lawson A.M., Ben Jannet H. Steroids. 2018, 138, 102–107. https://doi.org/10.1016/j.steroids.2018.07.004
  7. Aher N.G., Pore V.S., Mishra N.N., Kumar A., Shukla P.K., Sharma A., Bhat M.K. Bioorg. Med. Chem. Lett. 2009, 19, 759–763. https://doi.org/10.1016/j.bmcl.2008.12.026
  8. Thirumurugan P., Matosiuk D., Jozwiak K. Chem. Rev. 2013, 113, 4905–4979. https://doi.org/10.1021/cr200409f
  9. Agalave S.G., Maujan S.R., Pore V.S. Chem. – Asian J. 2011, 6, 2696–2718. https://doi.org/10.1002/asia.201100432
  10. Rani A., Singh G., Singh A., Maqbool U., Kaur G., Singh J. RSC Adv. 2020, 10, 5610–5635. https://doi.org/10.1039/c9ra09510a
  11. Dheer D., Singh V., Shankar R. Bioorg. Chem. 2017, 71, 30–54. https://doi.org/10.1016/j.bioorg.2017.01.010
  12. Ameziane El Hassani I., Rouzi K., Ameziane El Hassani A., Karrouchi K., Ansar M. Organics. 2024, 5, 450–471. https://doi.org/10.3390/org5040024
  13. Vala D.P., Vala R.M., Patel H.M. ACS Omega. 2022, 7, 36945–36987. https://doi.org/10.1021/acsomega.2c04883
  14. Hein J.E., Fokin V.V. Chem. Soc. Rev. 2010, 39, 1302–1315. https://doi.org/10.1039/b904091a
  15. Haldón E., Nicasio M.C., Pérez P.J. Org. Biomol. Chem. 2015, 13, 9528–9550. https://doi.org/10.1039/C5OB01457C
  16. Neumann S., Biewend M., Rana S., Binder W.H. Macromol. Rapid Commun. 2020, 41, 1900359. https://doi.org/10.1002/marc.201900359
  17. Hein J.E., Tripp J.C., Krasnova L.B., Sharpless K.B., Fokin V.V. Angew. Chem. Int. Ed. 2009, 48, 8018–8021. https://doi.org/10.1002/anie.200903558
  18. Arenas J.L., Crousse B. Eur. J. Org. Chem. 2021, 2021, 2665–2679. https://doi.org/10.1002/ejoc.202100327
  19. Deng J., Wu Y.M., Chen Q.Y. Synthesis. 2005, 2730–2738. https://doi.org/10.1055/s-2005-872119
  20. Gribanov P.S., Chesnokov G.A., Topchiy M.A., Asachenko A.F., Nechaev M.S. Org. Biomol. Chem. 2017, 15, 9575–9578. https://doi.org/10.1039/C7OB02091K
  21. Carcenac Y., David-Quillot F., Abarbri M., Duchêne A., Thibonnet J. Synthesis. 2013, 45, 633–638. https://doi.org/10.1055/s-0032-1318112
  22. Govdi A.I., Danilkina N.A., Ponomarev A.V., Balova I.A. J. Org. Chem. 2019, 84, 1925–1940. https://doi.org/10.1021/acs.joc.8b02916
  23. Schulman J.M., Friedman A.A., Panteleev J., Lautens M. Chem. Commun. 2012, 48, 55–57. https://doi.org/10.1039/C1CC16110E
  24. Kotovshchikov Y.N., Latyshev G.V., Beletskaya I.P., Lukashev N.V. Synthesis. 2018, 50, 1926–1934. https://doi.org/10.1055/s-0036-1591896
  25. Szuroczki P., Sámson J., Kollár L. ChemistrySelect. 2019, 4, 5527–5530. https://doi.org/10.1002/slct.201900848
  26. De Albuquerque D.Y., De Moraes J.R., Schwab R.S. Eur. J. Org. Chem. 2019, 2019, 6673–6681. https://doi.org/10.1002/ejoc.201901249
  27. Gribanov P.S., Philippova A.N., Topchiy M.A., Minaeva L.I., Asachenko A.F., Osipov S.N. Molecules. 2022, 27, 1999. https://doi.org/10.3390/molecules27061999
  28. Kotovshchikov Y.N., Tatevosyan S.S., Latyshev G.V., Kugusheva Z.R., Lukashev N.V., Beletskaya I.P. New J. Chem. 2023, 47, 12239–12247. https://doi.org/10.1039/D3NJ01264F
  29. Li L., Shang T., Ma X., Guo H., Zhu A., Zhang G. Synlett. 2015, 26, 695–699. https://doi.org/10.1055/s-0034-1379970
  30. do Nascimento J.E.R., Gonçalves L.C.C., Hooyberghs G., Van der Eycken E.V., Alves D., Lenardão E.J., Perin G., Jacob R.G. Tetrahedron Lett. 2016, 57, 4885–4889. https://doi.org/10.1016/j.tetlet.2016.09.027
  31. Danilkina N.A., Govdi A.I., Balova I.A. Synthesis. 2020, 52, 1874–1896. https://doi.org/10.1055/s-0039-1690858
  32. Tatevosyan S.S., Kotovshchikov Y.N., Latyshev G.V., Erzunov D.A., Sokolova D.V., Beletskaya I.P., Lukashev N.V. J. Org. Chem. 2020, 85, 7863–7876. https://doi.org/10.1021/acs.joc.0c00520
  33. Tatevosyan S.S., Kotovshchikov Y.N., Latyshev G.V., Lukashev N.V., Beletskaya I.P. Synthesis. 2022, 54, 369–377. https://doi.org/10.1055/a-1623-2333
  34. Voloshkin V.A., Kotovshchikov Y.N., Latyshev G.V., Lukashev N.V., Beletskaya I.P. J. Org. Chem. 2022, 87, 7064–7075. https://doi.org/10.1021/acs.joc.2c00235
  35. Kotovshchikov Y.N., Latyshev G.V., Navasardyan M.A., Erzunov D.A., Beletskaya I.P., Lukashev N.V. Org. Lett. 2018, 20, 4467−4470. https://doi.org/10.1021/acs.orglett.8b01755
  36. Kotovshchikov Y.N., Latyshev G.V., Kirillova E.A., Moskalenko U.D., Lukashev N.V., Beletskaya I.P. J. Org. Chem. 2020, 85, 9015–9028. https://doi.org/10.1021/acs.joc.0c00931
  37. Gevondian G.A., Kotovshchikov Y.N., Latyshev G.V., Lukashev N.V., Beletskaya I.P. J. Org. Chem. 2021, 86, 5639–5650. https://doi.org/10.1021/acs.joc.1c00115
  38. Kotovshchikov Y.N., Sultanov R.H., Latyshev G.V., Lukashev N.V., Beletskaya I.P. Org. Biomol. Chem. 2022, 20, 5764–5770. https://doi.org/10.1039/D2OB00909A
  39. Barashkova X.A., Gevondian A.G., Latyshev G.V., Kotovshchikov Y.N., Bezzubov S.I., Lukashev N.V., Beletskaya I.P. Org. Lett. 2024, 26, 9625–9630. https://doi.org/10.1021/acs.orglett.4c03082
  40. Гевондян А.Г., Котовщиков Ю.Н., Латышев Г.В., Лукашев Н.В., Белецкая И.П. ЖОрХ. 2023, 59, 1121–1130.
  41. Galashev R.N., Latyshev G.V., Kotovshchikov Y.N., Lukashev N.V., Beletskaya I.P. Org. Biomol. Chem. 2025, 23, 4725–4729. https://doi.org/10.1039/d5ob00356c
  42. Nusser B.D., Jenkins L.E., Lin X., Zhu L. J. Org. Chem. 2024, 89, 12610–12618. https://doi.org/10.1021/acs.joc.4c01533

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).