Activation of Molecules H2 on Platinum and Platinovanadium Clusters: Quantum-Chemical DFT Modeling

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The NEB DFT/PBE0/def2tzvp quantum-chemical method with the construction of minimum energy paths (MEP) was used to study the activation of H2 molecules by Pt4 and Pt3V clusters. It is shown that, in the case of Pt4 and Pt3V clusters, barrier-free dissociative adsorption of H2 molecules occurs on platinum centers, while molecular adsorption of hydrogen occurs on the vanadium atom in Pt3V with a slight weakening of the H–H bond, but without its breaking. The noted features of the coordination of H2 molecules are explained at the level of the MO method. It has been established that the migration of the H atom from one cluster metal center to another in the considered model clusters, as, possibly, in the phenomenon of hydrogen spillover, occurs at small activation barriers in the direction of the displacement vector corresponding to the normal vibration of the system in the transition state. In the process of hydrogen migration, a significant role of Pt–H–Pt and V–H–Pt bridging groups, which facilitate the transition of H atoms from one metal center of the cluster to another, has been revealed.

作者简介

N. Panina

St. Petersburg State Institute of Technology (Technical University)

编辑信件的主要联系方式.
Email: nataliepanina2707@gmail.com
Russia, 190013, St. Petersburg, 26 Moskovsky pr.

T. Buslaeva

MIREA – Russian Technological University (Lomonosov Institute
of Fine Chemical Technologies)

Email: nataliepanina2707@gmail.com
Russia, 119571, Moscow, Ave. Vernadsky, 86

A. Fischer

St. Petersburg State Institute of Technology (Technical University)

Email: nataliepanina2707@gmail.com
Russia, 190013, St. Petersburg, 26 Moskovsky pr.

参考

  1. D’Souza L., Regalbuto J.R. // Stud. Surf. Sci. Catal. 2010. V. 175. P. 715. https://doi.org/10.1016/S0167-2991(10)75143-0
  2. Chotisuwan S., Wittayakun J., Gates B.C. // Ibid. 2006. V. 159. P. 209. https://doi.org/10.1016/S0167-2991(06)81570-3
  3. Llorca J., Homs N., Sales J., de la Piscina P.R. // Ibid. 1998. V. 119. P. 647. https://doi.org/10.1016/S0167-2991(98)80505-3
  4. Smith M.W., Shekhawat D. // Fuel Cells: Technologies for Fuel Processing. Ch. 5. Catalytic Partial Oxidation. 2011. P. 73. https://doi.org/10.1016/B978-0-444-53563-4.10005-7
  5. Deng Q., Li X., Gao R., Jun Wang J., Zeng Z., Zou J.-J., Deng S., Tsang S.C. // J. Am. Chem. Soc. 2021. V. 143. № 50. P. 21294. https://doi.org/10.1021/jacs.1c08259
  6. Popov A.A., Shubin Yu.V., Bauman Yu.I., Plyusnin P.E., Mishakov I.V., Sharafutdinov M.R., Maksimovskiy E.A., Korenev S.V., Vedyagin A.A. // Nanotechnology. 2020. V. 31. № 39. P. 495604. https://doi.org/10.1088/1361-6528/abb430
  7. Melnikov D., Stytsenko V., Saveleva E., Kotelev M., Lyubimenko V., Ivanov E., Glotov A., Vinokurov V. // Catalists. 2020. V. 10. № 6. P. 624. https://doi.org/10.3390/catal10060624
  8. Mitsudome T., Miyagawa K., Maeno Z., Mizugaki T., Jitsukawa K., Yamasaki J., Kitagawa Y., Kaneda K. // Angew. Chem. Int. Ed. 2017. V. 56. P. 9381. https://doi.org/10.1002/ange.201704199
  9. Li K., An H., Yan P., Yang C., Xiao T., Wang J., Zhou S. // ACS Omega. 2021. V. 6. № 8. P. 5846. https://doi.org/10.1021/acsomega.0c06268
  10. Фесик Е.В., Буслаева Т.М., Архипушкин И.А. // Журнал общей химии. 2020. Т. 90. № 11. С. 1780. https://doi.org/10.31857/S0044460X20110207
  11. Розанов В.В., Крылов О.В. // Успехи химии. 1997. Т. 66. № 2. С. 117. https://doi.org/10.1070/RC1997v066n02ABEH000308
  12. Shen H., Hao Li H., Yang Z., Li C. // Green Energy Environ. 2022. V. 7. № 6. P. 1161. https://doi.org/10.1016/j.gee.2022.01.013
  13. Дадаян А.К., Борисов Ю.А., Золотарев Ю.А., Мясоедов Н.Ф. // Журнал физической химии. 2021. Т. 95. № 5. С. 743. https://doi.org/10.31857/S0044453721050095
  14. Xiong M., Gao Z., Qin Y. // ACS Catal. 2021. V. 11. № 5. P. 3159. https://doi.org/10.1021/acscatal.0c05567
  15. Sihag A., Xie Z.-L., Thang H.V., Kuo C.-L. Tseng F.-G., Dyer M.S., Chen H.Y. // J. Phys. Chem. C. 2019. V. 123. № 42. P. 25618. https://doi.org/10.1021/acs.jpcc.9b04419
  16. Chompoonut R., Kajornsak F., Noriaki S., Nawee K., Supawadee N. // Int. J. Hydrogen Energy. 2018. V. 43. № 52. C. 23336. https://doi.org/10.1016/j.ijhydene.2018.10.211
  17. Subramani M., Arumugam D., Ramasamy S. // Int. J. Hydrogen Energy. 2023. V. 48. № 10. P. 4016. https://doi.org/10.1016/j.ijhydene.2022.10.220
  18. Guo J.-H., Li X.-D., Cheng X.-Lu., Liu H.-Y., Li S.-J., Chen G. // Int. J. Hydrogen Energy. 2018. V. 43. № 41. P. 19121. https://doi.org/10.1016/j.ijhydene.2018.08.143
  19. Kostyukovich A., Gordeev E., Ananikov V. // Mendeleev Commun. 2022. V. 32. P. 571. https://doi.org/10.1016/j.mencom.2022.09.001
  20. Damte J.Y., Zhu Z.-J., Lin P.-J., Yeh C.-H., Jiang J.-C. // J. Comput. Chem. 2019. V. 41. № 3. P. 194. https://doi.org/10.1002/jcc.26088
  21. Du J., Sun X., Chen J., Jiang G. // J. Phys. Chem. A. 2010. V. 114. № 49. P. 12825. https://doi.org/10.1021/jp107366z
  22. Zhang X., Xu C., Zhang Y., Cheng C., Yang Z., Hermansson K. // Int. J. Hydrogen Energy. 2021. V. 46. № 12. P. 8477. https://doi.org/10.1016/j.ijhydene.2020.11.278
  23. Завелев Д.Е., Жидомиров Г.М., Цодиков М.В. // Кинетика и катализ. 2020. Т. 61. № 1. С. 5. https://doi.org/10.31857/S0453881120010153
  24. Мацура В.А., Панина Н.С., Потехин В.В., Украинцев В.Б., Хохряков К.А., Платонов В.А., Таценко О.М., Панин А.И. // ЖОХ. 2004. Т. 74. Вып. 7. С. 1057. (Для англ. версии. Matsura V.A., Panina N.S., Potekhin V.V., Ukraintsev V.B., Khokhryakov K.A., Platonov V.V., Tatsenko O.M., Panin A.I. // Russ. J. Gen. Chem. 2004. V. 74. P. 975. https://doi.org/10.1023/B:RUGC.0000045849.54881.4f
  25. Завелев Д.Е., Жидомиров Г.М., Цодиков М.В. // Кинетика и катализ. 2018. Т. 59. № 4. С. 404. https://doi.org/10.1134/S0453881118040160
  26. Henkelman G., Jonsson H.J. // Chem. Phys. 2000. V. 113. № 22. P. 9901. https://doi.org/10.1063/1.1329672
  27. Asgeirsson V., Birgisson B.O., Bjornsson R., Becker U., Neese F., Riplinger C., Jónsson H. // J. Chem. Theory Comput. 2021. V. 17. № 8. P. 4929. https://doi.org/10.1021/acs.jctc.1c00462
  28. Neese F. // Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012. V. 2. I. 1. P. 73. https://doi.org/10.1002/wcms.81
  29. Neese F., Wennmohs F., Becker U., Riplinger C. // J. Chem. Phys. 2020. V. 152. I. 22. P. 224108. https://doi.org/10.1063/5.0004608
  30. Neese F., Wennmohs F. Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 1, 45470 Mülheim a. d. Ruhr, Germany, ORCA Manual, Version 5.0.1. 2021. P. 775.
  31. Neese F. // Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2022. V. 12. I. 5. P. e1606. https://doi.org/10.1002/wcms.1606
  32. Adamo C., Barone V. // J. Chem. Phys. 1999. V. 110. № 13. P. 6158. https://doi.org/10.1063/1.478522
  33. Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. V. 7. P. 3297. https://doi.org/10.1039/B508541a
  34. Schlegel H.B. // J. Comp. Chem. 1982. V. 3. № 2. P. 214. https://doi.org/10.1002/jcc.540030212
  35. Lu T., Chen F. // J. Comput. Chem. 2012. V. 33. I. 5. P. 580. https://doi.org/10.1002/jcc.22885
  36. http://www.chemcraftprog.com
  37. Corbel G., Topic M., Gibaud A., Lang C.I. // J. Alloys Compd. 2011. V. 509. P. 6532.
  38. Waterstrat R.M. // Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science. 1973. V. 4. P. 455.
  39. Maldonado A., Schubert K. // Zeitschrift fuer Metallkunde. 1964. V. 55. P. 619.
  40. Mulliken R.S. // J. Chem. Phys. 1955. V. 23. P. 1833. https://doi.org/10.1063/1.1740588
  41. Hirshfeld F. // Theor. Chim. Acta. 1977. V. 44. I. 2. P. 129. https://doi.org/10.1007/BF00549096
  42. Luo Y.R. Comprehensive Handbook of Chemical Bond Energies. CRC Press. Boca Raton. FL. 2007. https://doi.org/10.1201/9781420007282
  43. Гринвуд Н., Эрншо А. Химия элементов. Т. 2. Москва: изд-во “БИНОМ. Лаборатория знаний”, 2008. С. 315. 473.
  44. https://physics.nist.gov/asd. National Institute of Standards and Technology, Gaithersburg, MD. https://doi.org/10.18434/T4W30F
  45. Пирсон Р. Правила симметрии в химических реакциях. Москва: Мир, 1979. С. 13–20.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (86KB)
3.

下载 (1MB)
4.

下载 (693KB)
5.

下载 (79KB)
6.

下载 (2MB)
7.

下载 (881KB)
8.

下载 (569KB)
9.

下载 (622KB)
10.

下载 (556KB)


##common.cookie##