Novel Two-Stage Method of Preparing Graphitic Carbon Nitride Doped by Chlorine for Photocatalytic Hydrogen Evolution and Photocurrent Generation

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this work graphitic carbon nitride doped by chlorine was prepared by a two-stage technique at first. At the first stage melamine was hydrothermally treated with glucose, at the second stage the mixture of as-prepared melamine with ammonium chloride was calcined. The obtained samples were investigated by the set of methods: X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), diffuse reflectance spectroscopy, photoelectrochemical methods. All prepared photocatalysts was tested in the reaction of photocatalytic hydrogen production from basic solutions of triethanolamine. It was shown that the highest values of the catalytic activity and short-circuit current density were obtained over the photocatalyst preparing by calcination of the mixture containing 30% ammonium chloride and 70% melamine. The highest value of the catalytic activity was 1332 μmol h–1 g–1 and was more than the catalytic activity of carbon nitride preparing by the melamine calcination without another treatment in 22 times.

作者简介

A. Zhurenok

Federal Research Center Boreskov Institute of Catalysis

Email: madiva@catalysis.ru
Russia, 630090, Novosibirsk, Pr. Ak. Lavrentieva, 5

D. Markovskaya

Federal Research Center Boreskov Institute of Catalysis

编辑信件的主要联系方式.
Email: madiva@catalysis.ru
Russia, 630090, Novosibirsk, Pr. Ak. Lavrentieva, 5

K. Potapenko

Federal Research Center Boreskov Institute of Catalysis

Email: madiva@catalysis.ru
Russia, 630090, Novosibirsk, Pr. Ak. Lavrentieva, 5

N. Sidorenko

Federal Research Center Boreskov Institute of Catalysis

Email: madiva@catalysis.ru
Russia, 630090, Novosibirsk, Pr. Ak. Lavrentieva, 5

S. Cherepanova

Federal Research Center Boreskov Institute of Catalysis

Email: madiva@catalysis.ru
Russia, 630090, Novosibirsk, Pr. Ak. Lavrentieva, 5

A. Saraev

Federal Research Center Boreskov Institute of Catalysis

Email: madiva@catalysis.ru
Russia, 630090, Novosibirsk, Pr. Ak. Lavrentieva, 5

E. Gerasimov

Federal Research Center Boreskov Institute of Catalysis

Email: madiva@catalysis.ru
Russia, 630090, Novosibirsk, Pr. Ak. Lavrentieva, 5

E. Kozlova

Federal Research Center Boreskov Institute of Catalysis

Email: madiva@catalysis.ru
Russia, 630090, Novosibirsk, Pr. Ak. Lavrentieva, 5

参考

  1. Hosseini S.E., Wahid M.A., Jamil M.M., Azli A.A., Misbah M.F. // Int. J. Energy Res. 2015. V. 39. P. 1597.
  2. Abuadala A., Dincer I. // Int. J. Energy Res. 2012. V. 36. P. 415.
  3. Arachchige S.M., Brewer K.J. / Encyclopedia of Inorganic and Bioinorganic Chemistry. Wiley, 2011. https://onlinelibrary.wiley.com/doi/10.1002/9781119951438.eibc0458
  4. Heterogeneous Catalysis at Nanoscale for Energy Applications. Eds. Tao F., Schneider W.F., Kamat P.V., Wiley, 2014. 326 p.
  5. Acar C., Dincer I., Zamfirescu C. // Int. J. Energy Res. 2014. V. 38. P. 1903.
  6. Журенок А.В., Марковская Д.В., Потапенко К.О., Черепанова С.В., Сараев А.А., Герасимов Е.Ю., Козлова Е.А. // Кинетика и катализ. 2022. Т. 63. № 3. С. 294.
  7. Марковская Д.В., Люлюкин М.Н., Журенок А.В., Козлова Е.А. // Кинетика и катализ. 2021. Т. 62. № 4. С. 437.
  8. An C.W., Liu T., Zhang D.F., Yan J.S. // Кинетика и катализ. 2020. Т. 61. № 6. С. 818.
  9. Jain A., Ameta C. // Кинетика и катализ. 2020. Т. 61. № 2. С. 246.
  10. Краснякова Т.В., Юрчило С.А., Моренко В.В., Носолев И.К., Глазунова Е.В., Хасбулатов С.В., Вербенко И.А., Митченко С.А. // Кинетика и катализ. 2020. Т. 61. № 3. С. 359.
  11. Salman M., Guorui N., Ayub Y., Wang S., Wang L., Wang X., Yan W., Peng S., Ramakarishna S. // Appl. Catal. B: Env. 2019. V. 257. P. 117855.
  12. Koutsouroubi E.D., Vamvasakis I., Papadas I.T., Drivas C., Choulis S., Kennou S., Armatas G. // ChemPlusChem. 2020. V. 85. P. 1379.
  13. Azharal U., Bashir, M.S., Babar M., Arif M., Hassan A., Riaz M., Mujahid R., Sagir M., Suri S.U.K., Show P.L., Chang J.-S., Khoo K.S., Mubashir M. // Chemosphere. 2022. P. 134792.
  14. Shcherban N.D., Shvalagin V.V., Korzhak G.V., Yaremov P.S., Skoryk M.A., Sergiienko S.A., Kuchmiy S.Ya. // J. Mol. Struct. 2022. V. 1250. P. 131741.
  15. Patel S.B., Tripathi A., Vyas A.P. // Environ. Nanotechnol. Monitor. Manag. 2021. V. 16. P. 100589.
  16. Lu S., Shen L., Li X., Yu B., Ding J., Gao P., Zhang H. // J. Clean. Prod. 2022. V. 378. P. 134589.
  17. Zhang Y., Yuan J., Ding Y., Liu B., Zhao L., Zhang S. // Ceram. Int. 2021. V. 47. P. 31005.
  18. Phuc N.V., An D.T., Tri N.N., Tran H.H., Tran T.T.H., Nguyen P.H., Vien V.O. // Appl. Mech. Mater. 2019. V. 889. P. 24.
  19. Zhou Y., Zhang L., Liu J., Fan X., Wang B., Wang M., Ren W., Wang J., Li M., Shi J. // J. Mater. Chem. A. 2015. V. 3. P. 3862.
  20. Nguyen M.D., Nguyen T.B., Thamilselvan A., Nguyen T.G., Kuncoro E.P., Doong R.-a. // J. Environ. Chem. Eng. 2022. V. 10. P. 106905.
  21. Thorat N., Yadav A., Yadav M., Gupta S., Varma R., Pillai S., Fernandes R., Patel M., Patel N. // J. Environ. Manage. 2019. V. 247. P. 57.
  22. Vasilchenko D., Zhurenok A., Saraev A., Gerasimov E., Cherepanova S., Kovtunova L., Tkachev S., Kozlova E. // Int. J. Hydrogen Energy. 2022. V. 47. P. 11326.
  23. Sun S., Li J., Song P., Cui J., Yang Q., Zheng X., Yang Z., Liang S. // Appl. Surf. Sci. 2020. V. 500. P. 143985.
  24. Zhurenok, A.V., Larina, T.V., Markovskaya, D.V., Cherepanova, S.V., Mel’gunova E.A., Kozlova E.A. // Mendeleev Commun. 2021. V. 31. P. 157.
  25. Lu Y., Wang W., Cheng H., Qiu H., Sun W., Fang X., Zhu J., Zheng Y. // Int. J. Hydrogen Energy. 2022. V. 47. P. 3733.
  26. Škuta R., Matějka V., Foniok K., Smýkalová A., Cvejn D., Gabor R., Kormunda M., Smetana B., Novák V., Praus P. // Appl. Surf. Sci. 2021. V. 552. P. 149490.
  27. Kesavan G., Vinothkumar V., Chen S.–M., Thangadurai T.D. // Appl. Surf. Sci. 2021. V. 556. P. 149814.
  28. Zhang Z., Cui L., Zhang Y., Klausen L.H., Chen M., Sun D., Xu S., Kang S., Shi J. // App. Catal. B: Env. 2021. V. 297. P. 120441.
  29. Dong F., Zhao Z., Xiong T., Ni Z., Zhang W., Sun Y., Ho W.K. // ACS Appl. Mater. Inter. 2013. V. 5. P. 11392.
  30. Liu H., Chen D., Wang Z., Jing H., Zhang R. // Appl. Catal. B: Env. 2017. V. 203. P. 300.
  31. Shvalagin V., Kuchmiy S., Skoryk M., Bondarenko M., Khyzhun O. // Mater. Sci. Eng. B. 2021. V. 271. P. 115304.
  32. Wang Z., Wang Y., Xu S., Jin Y., Tang Z., Xiao G., Su H. // Polym. Degrad. Stabil. 2021. V. 190. P. 109638.
  33. Ren X., Zhang Y., Yang L. Chen Z. // Inorg. Chem. Commun. 2021. V. 133. P. 108863.
  34. Zhurenok A.V., Markovskaya D.V., Gerasimov E.Yu., Cherepanova S.V., Bukhtiyarov A.V., Kozlova E.A. // RSC Adv. 2021. V. 11. P. 37966.
  35. Zhurenok A.V., Markovskaya D.V., Gerasimov E.Yu., Vokhmintsev A.S., Weinstein I.A., Prosvirin I.P., Cherepanova S.V., Bukhtiyarov A.V., Kozlova E.A. // Catalysts. 2021. V. 11. P. 1340.
  36. Barr T.L. // J. Phys. Chem. 1978. V. 82. P. 1801.
  37. Bernsmeier D., Sachse R., Bernicke M., Schmack R., Kettemann F., Polte J., Kraehnert R. // J. Catal. 2019. V. 369. P. 181.
  38. Gołąbiewska A., Lisowski W., Jarek M., Nowaczyk G., Zielińska-Jurek A., Zaleska A. // Appl. Surf. Sci. 2014. V. 317. P. 1131.
  39. Смирнов М.Ю., Вовк Е.И., Нартова А.В., Калинкин А.В., Бухтияров В.И. // Кинетика и катализ. 2018. Т. 59. № 5. С. 631.
  40. Kozlova E.A., Markovskaya D.V., Cherepanova S.V., Saraev A.A., Gerasimov E.Y., Perevalov T.V., Kaichev V.V., Parmon V.N. // Int. J. Hydrogen Energy. 2014. V. 39. P. 18758.
  41. Markovskaya D.V., Kozlova E.A., Cherepanova S.V., Kolinko P.A., Gerasimov E.Y., Parmon V.N. // ChemPhotoChem. 2017. V. 1. P. 575.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (155KB)
3.

下载 (105KB)
4.

下载 (355KB)
5.

下载 (3MB)
6.

下载 (2MB)
7.

下载 (186KB)
8.

下载 (111KB)


##common.cookie##