Nickel Based Ni–Ce1–xZrxO2 Catalysts Prepared by Pechini Method for CO2 Methanation

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Nickel-based Ni–Ce1 – xZrxO2 catalysts were prepared by Pechini method and their catalytic performance towards CO2 methanation reaction was studied. It was shown that the catalysts exhibit high catalytic activity comparable to the activity of industrial methanation catalyst NIAP-07-05. The catalysts were characterized using a complex of X-ray diffraction methods with experiments on synchrotron radiation, high-resolution electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. It is shown that the preparation method makes it possible to achieve a high dispersion of nickel-containing particles formed during the decomposition of the Ni–Ce–Zr–O substitutional solid solution obtained during the synthesis. However, due to the decorating effect, the surface of nickel-containing particles is poorly accessible to reagents. For this reason, the Ni–Ce1 – xZrxO2 catalysts obtained by the Pechini method are less active than the supported Ni/Ce1 – xZrxO2 catalysts.

Sobre autores

V. Pakharukova

Boreskov Institute of Catalysis SB RAS; Novosibirsk State University

Autor responsável pela correspondência
Email: verapakh@catalysis.ru
Russia, 630090, Novosibirsk, Ave. Lavrentieva 5; Russia, 630090, Novosibirsk, Pirogova Street 2

O. Stonkus

Boreskov Institute of Catalysis SB RAS

Email: verapakh@catalysis.ru
Russia, 630090, Novosibirsk, Ave. Lavrentieva 5

N. Kharchenko

Boreskov Institute of Catalysis SB RAS; Novosibirsk State University

Email: verapakh@catalysis.ru
Russia, 630090, Novosibirsk, Ave. Lavrentieva 5; Russia, 630090, Novosibirsk, Pirogova Street 2

V. Rogozhnikov

Boreskov Institute of Catalysis SB RAS

Email: verapakh@catalysis.ru
Russia, 630090, Novosibirsk, Ave. Lavrentieva 5

Yu. Chesalov

Boreskov Institute of Catalysis SB RAS

Email: verapakh@catalysis.ru
Russia, 630090, Novosibirsk, Ave. Lavrentieva 5

A. Gorlova

Boreskov Institute of Catalysis SB RAS; Novosibirsk State University

Email: verapakh@catalysis.ru
Russia, 630090, Novosibirsk, Ave. Lavrentieva 5; Russia, 630090, Novosibirsk, Pirogova Street 2

A. Saraev

Boreskov Institute of Catalysis SB RAS

Email: verapakh@catalysis.ru
Russia, 630090, Novosibirsk, Ave. Lavrentieva 5

D. Potemkin

Boreskov Institute of Catalysis SB RAS; Novosibirsk State University

Email: verapakh@catalysis.ru
Russia, 630090, Novosibirsk, Ave. Lavrentieva 5; Russia, 630090, Novosibirsk, Pirogova Street 2

Bibliografia

  1. Bailera M., Lisbona P., Romeo L.M., Espatolero S. // Renew. Sustain. Energy Rev. 2017. V. 69. P. 292.
  2. Rönsch S., Schneider J., Matthischke S., Schlüter M., Götz M., Lefebvre J., Prabhakaran P., Bajohr S. // Fuel. 2016. V. 166. P. 276.
  3. Hidalgo D., Martín-Marroquín J.M. // Renew. Sustain. Energy Rev. 2020. V 132. P. 110057.
  4. Wang W., Wang S., Ma X., Gong J. // Chem. Soc. Rev. 2011. V. 40. № 7. P. 3703.
  5. Ashok J., Pati S., Hongmanorom P., Tianxi Z., Junmei C., Kawi S. // Catal. Today. 2020. V. 356. P. 471.
  6. Fan W.K., Tahir M. // J. Environ. Chem. Eng. 2021. V. 9. № 4. P. 105460.
  7. Lee W.J., Li C., Prajitno H., Yoo J., Patel J., Yang Y., Lim S. // Catal. Today. 2021. V. 368. P. 2.
  8. Ли Ч., Бянь Л., Чжу Ц., Ван В. // Кинетика и катализ. 2014. V. 55. № 2. P. 226. (Li Z., Bian L., Zhu Q., Wang W. // Kinet. Catal. 2014. V. 55. № 2. P. 217.)
  9. Le T.A., Kim M.S., Lee S.H., Kim T.W., Park E.D. // Catal. Today. 2017. V. 293–294. P. 89.
  10. Tada S., Shimizu T., Kameyama H., Haneda T., Kikuchi R. // Int. J. Hydrogen Energy. 2012. V. 37. № 7. P. 5527.
  11. Nematollahi B., Rezaei M., Lay E.N. // J. Rare Earths. 2015. V. 33. № 6. P. 619.
  12. Konishcheva M.V., Potemkin D.I., Badmaev S.D., Snytnikov P.V., Paukshtis E.A., Sobyanin V.A., Parmon V.N. // Top. Catal. 2016. V. 59. № 15–16. P. 1424.
  13. Konishcheva M.V., Potemkin D.I., Snytnikov P.V., Sobyanin V.A. // Int. J. Hydrogen Energy. 2019. V. 44. № 20. P. 9978.
  14. Ли Ч., Ли. Б., Ли Ч. // Кинетика и катализ. 2015. V 56. № 3. P. 326. (Li Z., Li B., Li Z., Rong X. // Kinet. Catal. 2015. V. 56. № 3. P. 329.)
  15. Pan Q., Peng J., Sun T., Gao D., Wang S., Wang S. // Fuel Process. Technol. 2014. V. 123. P. 166.
  16. Pakharukova V.P., Potemkin D.I., Stonkus O.A., Kharchenko N.A., Saraev A.A., Gorlova A.M. // J. Phys. Chem. C. 2021. V. 125. № 37. P. 20538.
  17. Martin N.M., Velin P., Skoglundh M., Bauer M., Carlsson P.-A. // Catal. Sci. Technol. 2017. V. 7. № 5. P. 1086.
  18. Rombi E., Cutrufello M.G., Atzori L., Monaci R., Ardu A., Gazzoli D., Deiana P., Ferino I. // Appl. Catal. A: Gen. 2016. V. 515. P. 144.
  19. Znak L., Stołecki K., Zieliński J. // Catal. Today. 2005. V. 101. № 2. P. 65.
  20. Ashok J., Ang M.L., Kawi S. // Catal. Today. 2017. V. 281. P. 304.
  21. Atzori L., Cutrufello M.G., Meloni D., Onida B., Gazzoli D., Ardu A., Monaci R., Sini M.F., Rombi E. // Front. Chem. Sci. Eng. 2021. V. 15. № 2. P. 251.
  22. Nematollahi B., Rezaei M., Lay E.N. // Int. J. Hydrogen Energy. 2015. V. 40. № 27. P. 8539.
  23. Shan W. // Appl. Catal. A: Gen. 2003. V. 24. № 1. P. 1.
  24. Bendieb Aberkane A., Yeste M.P., Djazi F., Cauqui M.A. // Nanomaterials. 2022. V. 12. № 15. P. 2627.
  25. Nie W., Zou X., Chen C., Wang X., Ding W., Lu X. // Catalysts. 2017. V. 7. № 12. P. 104.
  26. Пахарукова В.П., Стонкус О.А., Харченко Н.А., Рогожников В.Н., Горлова А.М., Потемкин Д.И. // Журнал структурной химии. 2022. Т. 63. № 9. 97829:1–11. (Pakharukova V.P., Stonkus O.A., Kharchenko N.A., Rogozhnikov V.N., Gorlova A.M., Potemkin D.I. // J. Struct. Chem. 2022. V. 63. № 9. P. 1424.)
  27. Pakharukova V.P., Potemkin D.I., Rogozhnikov V.N., Stonkus O.A., Gorlova A.M., Nikitina N.A., Suprun E.A., Brayko A.S. et al. // Nanomaterials. 2022. V. 12. № 18. P. 3207.
  28. Шмаков А.Н., Мытниченко С.В., Цыбуля С.В., Соловьева Л.П., Толочко Б.П. // Журн. структурной химии. 1994. Т. 35. № 2. С. 85. (Shmakov A.N., Mytnichenko S.V., Tsybulya S.V., Solovyeva L.P., Tolochko B.P. // J. Struct. Chem. 1994. V. 35. № 2. P. 224.)
  29. Piminov P.A., Baranov G.N., Bogomyagkov A.V., Berkaev D.E., Borin V.M., Dorokhov V.L., Karnaev S.E., Kiselev V.A., Levichev E.B., Meshkov O.I., Mishnev S.I., Nikitin S.A., Nikolaev I.B., Sinyatkin S.V., Vobly P.D., Zolotarev K.V., Zhuravlev A.N. // Phys. Procedia. 2016. V. 84. P. 19.
  30. Qiu X., Thompson J.W., Billinge S.J.L. // J. Appl. Crystallogr. 2004. V. 37. № 4. P. 678.
  31. Egami T., Billinge S.J.L. Underneath the Bragg Peaks: Structural analysis of complex materials. Pergamon: New York, 2012.
  32. Farrow C.L., Juhas P., Liu J.W., Bryndin D., Božin E.S., Bloch J., Proffen T., Billinge S.J.L. // J. Phys. Condens. Matter. 2007. V. 19. № 33. P. 335219.
  33. Inorganic Crystal Structure Database (ICSD-for-WWW), Fachinformationszentrum (FIZ) Karlsruhe, Germany, 2007.
  34. Scofield J.H. // J. Electron Spectros. Relat. Phenomena. 1976. V. 8. № 2. P. 129.
  35. Fairley N. www.casaxps.com
  36. Hernández-Alonso M.D., Belén Hungría A., Martínez-Arias A., Coronado J.M., Carlos Conesa J., Soria J., Fernández-García M. // Phys. Chem. Chem. Phys. 2004. V. 6. № 13. P. 3524.
  37. McBride J.R., Hass K.C., Poindexter B.D., Weber W.H. // J. Appl. Phys. 1994. V. 76. № 4. P. 2435.
  38. Lin S., Hao Z., Shen J., Chang X., Huang S., Li M., Ma X. // J. Energy Chem. 2021. V. 59. P. 334.
  39. Zou W., Ge C., Lu M., Wu S., Wang Y., Sun J., Pu Y., Tang C., Gao F., Dong L. // RSC Adv. 2015. V. 5. № 119. P. 98335.
  40. Alders D., Voogt F.C., Hibma T., Sawatzky G.A. // Phys. Rev. B. 1996. V. 54. № 11. P. 7716.
  41. Van Veenendaal M.A., Sawatzky G.A. // Phys. Rev. Lett. 1993. V. 70. № 16. P. 2459.
  42. Carley A.F., Jackson S.D., O’Shea J.N., Roberts M.W. // Surf. Sci. 1999. V. 440. № 3. P. L868.
  43. Kaichev V.V., Teschner D., Saraev A.A., Kosolobov S.S., Gladky A.Y., Prosvirin I.P., Rudina N.A., Ayupov A.B., Blume R., Hävecker M., Knop-Gericke A., Schlögl R., Latyshev A.V., Bukhtiyarov V.I. // J. Catal. 2016. V. 334. P. 23.
  44. Lorenz P., Finster J., Wendt G., Salyn J.V., Žumadilov E.K., Nefedov V.I. // J. Electron Spectros. Relat. Phenomena. 1979. V. 16. № 3. P. 267.
  45. Bulavchenko O.A., Vinokurov Z.S., Afonasenko T.N., Tsyrul’nikov P.G., Tsybulya S.V., Saraev A.A., Kaichev V.V. // Dalt. Trans. 2015. V. 44. № 35. P. 15499.
  46. Tsunekawa S., Asami K., Ito S., Yashima M., Sugimoto T. // Appl. Surf. Sci. 2005. V. 252. № 5. P. 1651.
  47. Jeon T.S., White J.M., Kwong D.L. // Appl. Phys. Lett. 2001. V. 78. № 3. P. 368.
  48. Borchert H., Frolova Y.V., Kaichev V.V., Prosvirin I.P., Alikina G.M., Lukashevich A.I., Zaikovskii V.I., Moroz E.M., Trukhan S.N., Ivanov V.P., Paukshtis E.A., Bukhtiyarov V.I., Sadykov V.A. // J. Phys. Chem. B. 2005. V. 109. № 12. P. 5728.
  49. Christou S.Y., Álvarez-Galván M.C., Fierro J.L.G., Efstathiou A.M. // Appl. Catal. B: Environ. 2011. V. 106. № 1–2. P. 103.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (216KB)
3.

Baixar (363KB)
4.

Baixar (236KB)
5.

Baixar (2MB)
6.

Baixar (2MB)
7.

Baixar (242KB)
8.

Baixar (140KB)
9.

Baixar (286KB)


Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies