УЛК 544.478.13+546.98:546.181.1

ЭФФЕКТИВНЫЕ КАТАЛИЗАТОРЫ ПОЛУЧЕНИЯ ПЕРОКСИДА ВОДОРОДА АНТРАХИНОНОВЫМ МЕТОДОМ НА ОСНОВЕ ПАЛЛАЛИЙ-ФОСФОРНЫХ ЧАСТИЦ

© 2024 г. Л. Б. Белых a , *, Т. А. Корнаухова a , Н. И. Скрипов a , Е. А. Миленькая a , А. А. Мальцев a , Ф. К. Шмилт a

аФГБОУ ВО Иркутский государственный университет, ул. К. Маркса, 1, Иркутск, 664003 Россия
*e-mail: belvkh@chem.isu.ru

Поступила в редакцию 10.06.2024 г. После доработки 10.11.2024 г. Принята к публикации 18.11.2024 г.

Изучены свойства Pd-P-катализаторов, нанесенных на цеолит ZSM-5 в H- и Na-формах, в гидрировании 2-этил-9, 10-антрахинона в мягких условиях. Методами просвечивающей электронной микроскопии и рентгенофазового анализа определен размер и фазовый состав Pd-P-частиц. Установлено промотирующее действие фосфора на дисперсность палладиевых катализаторов и выход H_2O_2 . Рассмотрено влияние декатионированной формы цеолитного носителя на свойства палладиевых катализаторов в гидрировании 2-этил-9, 10-антрахинона. Показано, что нанесение Pd на цеолит Pd увеличивает вклад гидрогенолиза Pd-2-этил-Pd-3, 10-антрагидрохинона, снижая выход Pd-2. Модифицирование фосфором палладиевых катализаторов значительно подавляет оба побочных процесса: насыщение ароматических колец и гидрогенолиз связи Pd-2-этил-Pd-3, 10-антрагидрохинона. Pd-2 возрастает от Pd-4, Pd-3, Pd-4, P

Ключевые слова: пероксид водорода, 2-этил-9,10-антрахинон, гидрирование, палладий, фосфор, РФА. ПЭМ

DOI: 10.31857/S0453881124060063, EDN: QJGPPQ

ВВЕДЕНИЕ

Пероксид водорода как "зеленый" окислитель находит широкое применение в различных областях: целлюлозно-бумажной, текстильной, электронной промышленностях, в производстве синтетических моющих средств, оксида пропилена, для обеззараживания сточных вод и др. [1]. Из-за развития отраслей, использующих H_2O_2 ,

Сокращения и обозначения: ПЭМ ВР — просвечивающая электронная микроскопия высокого разрешения; РФА — рентгенофазовый анализ; МС ИСП — масс-спектрометрии с индуктивно связанной плазмой; РФЭС — рентгеновская фотоэлектронная спектроскопия; еАQ — 2-этил-9,10-антрахинон; еАQН $_2$ — 2-этил-9,10-антрагидрохинон; изо-Н $_4$ еАQН $_2$ — 2-этил-1,2,3,4-тетрагидро-9,10-антрагидрохинон; изо-Н $_4$ еАQН $_2$ — 2-этил-1,2,3,4,5,6,7,8-октагидро-9,10-антрагидрохинон; еАN — 2-этил-9(10)-антроны; N,N-диметил-формамид — ДМФА; Pd(acac) $_2$ — fuc-(ацетилацетонат) палладия; TOF — частота оборотов; a — каталитическая активность в расчете на весь палладий; D_{ПЭМ} — дисперсность, определенная из данных просвечивающей электронной микроскопии; d_{ПЭМ} — среднеповерхностный диаметр частиц.

и перехода на бесхлорные технологии ежегодное потребление Н₂О₂ возрастает в среднем на 3-4%: от 1 млн тонн в 1970 г. до 6 млн тонн в 2020 г. К настоящему времени разработаны химические, электрохимические, ферментативные или фотокаталитические способы получения пероксида водорода [2]. Среди трех основных промышленных методов синтеза Н₂О₂ (электрохимический -30 тыс. тонн H_2O_2 в год [2], автоокисление изо-пропанола — ≈77.9 тыс. тонн H_2O_2 в год (РФ) [3] и метод Ридла-Пфлейдерера (или автоокисления антрахинона) [2]), около 98% производимого в мире H₂O₂ приходится на антрахиноновый способ [4, 5]. Ключевой стадией антрахинонового процесса является селективное гидрирование 2-этил-9,10-антрахинона (eAQ) в 2-этил-9,10-антрагидрохинон (eAQH₂). Последний легко окисляется кислородом воздуха до Н₂О₂ с восстановлением исходного субстрата и возвратом рабочего раствора eAQ в колонну синтеза [5]:

$$\begin{array}{c|ccccc}
O & OH & O \\
R & & & \\
H_2 & & & \\
O & OH & O
\end{array}$$

$$\begin{array}{c|ccccccc}
R & & & \\
+ & & \\
O & & & \\
O & & & \\
\end{array}$$

$$\begin{array}{c}C & & \\
+ & \\
O & & \\
\end{array}$$

$$\begin{array}{c}C & & \\
+ & \\
\end{array}$$

$$\begin{array}{c}C & & \\
+ & \\
\end{array}$$

$$\begin{array}{c}C & & \\
+ & \\
\end{array}$$

$$\begin{array}{c}C & & \\
\end{array}$$

$$\begin{array}$$

Однако гидрирование алкилантрахинонов относится к сложным последовательно-параллельным процессам, в которых наряду с восстановлением карбонильной группы eAQ протекают различные побочные реакции, приводящие преимущественно к так называемым "неактивным хинонам" [5, 6]. К первой группе побочных процессов относится насыще-

ние ароматических колец в 2-этил-9,10-антрагидрохиноне с образованием двух изомеров: 2-этил-5,6,7,8-тетрагидро-9,10-антрагидрохинона (H_4 eAQ H_2) и 2-этил-1,2,3,4-тетрагидро-9,10-антрагидрохинона (изо- H_4 eAQ H_2), последующее гидрирование которых приводит к 2-этил-1,2,3,4,5,6,7,8-октагидро-9,10-антрагидрохинону (H_8 eAQ H_2):

$$eAQH_2 \rightarrow H_4eAQH_2(u30 - H_4eAQH_2) \rightarrow H_8eAQH_2. \tag{II}$$

Ко второй группе побочных процессов относится гидрогенолиз связи C—OH в $eAQH_2$ с образованием изомеров: 2-этил-9(10)-антронов (eAN). В результате дальнейшего гидрогенолиза 2-этил-9(10)-антронов в реакционной системе может накапливаться 2-этилантрацен, а при насыщении ароматических колец 2-этил-9(10)-антронов и 2-этилантрацена — 2-этил-5,6,7,8-тетра-

гидро-9-антрон, 2-этил-5,6,7,8-тетрагидро-10-антрон, 2-этил-9,10-ди-гидроантрацен и 2-этил-1,2,3,4-тетрагидроантрацен, 2-этил-1,2,3,4,5,6,7,8-октагидроантрацен соответственно [7]. Среди перечисленных продуктов превращения еAQ только два из них — еAQH2 и H_4 eAQ H_2 , так называемые "активные хиноны" — способны окисляться, давая H_2O_2 (уравнения (I), (III)):

Несмотря на столь широкое многообразие возможных побочных соединений, снижающих выход H_2O_2 , из-за различий в скоростях этих реакций в реакционной системе в основном преобладают H_4eAQH_2 (изо- H_4eAQH_2) и 2-этил-9(10)-антроны. В присутствии немодифицированных Pd-катализаторов константы скоростей реакций $eAQH_2 \rightarrow H_4eAQH_2$ и $eAQH_2 \rightarrow H_8eAQH_2$ различаются в 290 раз, а константы скоростей образования антронов обычно в 5—6 раз меньше скоростей превращения $eAQH_2$ в H_4eAQH_2 (изо- H_4eAQH_2) [8]. В промышленности для снижения вклада по-

бочных процессов гидрирование eAQ проводят на 60% [5]. Из-за высоких капитальных и эксплуатационных расходов на процесс автоокисления антрахинона текущая рыночная стоимость H_2O_2 не может конкурировать с ценой хлора [9], а метод экономически целесообразен только для крупнотоннажных производств с производительностью установки не менее 40 тонн в год [10]. Поэтому разработка новых или повышение эффективности известных катализаторов гидрирования алкилантрахинонов остается актуальной научной задачей.

К наиболее распространенным катализаторам гидрирования алкилантрахинонов относятся системы на основе палладия и никеля. Никелевые системы - катализаторы первого поколения синтеза Н₂О₂ антрахиноновым методом - из-за низкой селективности в результате избыточного гидрирования еАО, быстрой дезактивации и пирофорности никеля Ренея практически перестали использовать в промышленных масштабах. Хотя отдельные заводы все еще применяют никель Ренея [5]. В настоящее время наибольшее распространение в антрахиноновом методе синтеза Н₂О₂ получили системы на основе палладия, в частности, Pd/Al₂O₃ [11, 12]. Однако и этом случае не удается полностью избежать образования побочных продуктов.

Все более популярной тенденцией повышения эффективности Pd-катализаторов гидрирования алкилантрахинонов становится замена монометаллических систем на биметаллические сплавы (Pd-M, M = Ru [13], Co, Ag и Cu [14]), регулирование дисперсности и формы кристаллитов Pd [15, 16], варьирование кислотности и гидрофобности носителя [12, 17, 18], изменяющие соотношение скоростей побочных процессов. В последние годы все чаще используют р-элементы (P, S) как для модифицирования палладийсодержащих частиц [19—21], так и носителя [22—24].

Ранее на примере коллоидных растворов Pd-P-частиц нами было установлено, что введение фосфора в кристаллическую решетку палладия повышает селективность гидрирования еАО по активным хинонам и, как следствие этого, выход H_2O_2 с 69 до 93-97%, но на порядок уменьшает их каталитическую активность [6]. Модифицирующее действие фосфора на селективность гидрирования eAQ могло быть результатом обогащения поверхности Pd-Р-частиц электронодефицитным палладием [25] и/или структурной неупорядоченностью частиц Pd-Р-катализаторов, влияющей на конфигурацию адсорбированных молекул субстратов и, как следствие, на теплоту адсорбции. Нанесение Pd-Р-частиц на угольный носитель позволило увеличить активность в 5 раз без падения селективности по целевому продукту в результате роста дисперсности катализатора [26]. Однако угольный носитель, являясь относительно инертной подложкой, слабо удерживал Pd-P-частицы на поверхности. Во времени наблюдалась дезактивация катализатора, обусловленная, преимущественно, вымыванием Pd—P-частиц в раствор [27].

Цель настоящей работы заключалась в установлении влияния природы носителя (ZSM-5 в Na- и H-форме) и структурной упорядоченности Pd—P-частиц на свойства катализаторов Pd—nP/NaZSM-5 и Pd—nP/HZSM-5, используемых в виде структурно неупорядоченных твердых растворов фосфора в палладии и кристаллических фосфидов палладия в гидрировании 2-этил-9,10-антрахинона.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Материалы

Реагенты (ацетилацетон, фосфор), растворители (бензол, N,N-диметилформамид (ДМФА), толуол, октанол-1) предварительно очищали по стандартным методикам [28]. Pd(acac)₂ синтезировали по методике [29], перекристаллизовывали из ацетона.

Белый фосфор непосредственно перед применением механически очищали от поверхностных продуктов окисления и промывали безводным бензолом. Раствор белого фосфора в бензоле готовили и хранили в инертной атмосфере в сосуде типа "палец", конструкция которого предусматривает вакуумирование и заполнение аргоном.

В качестве носителя применяли цеолит NaZSM-5 и его декатионированную форму HZSM-5 (удельная поверхность — $340~{\rm m}^2/{\rm r}$, общий объем пор — $0.19~{\rm cm}^3/{\rm r}$, объем микропор — $0.14~{\rm cm}^3/{\rm r}$, средний диаметр пор — $2.2~{\rm hm}$), который перед получением катализатора предварительно прокаливали в муфеле при $500^{\circ}{\rm C}$ в течение $4~{\rm y}$.

Примеры проведения экспериментов

Пример 1 (0.5%Pd/NaZSM-5). В предварительно вакуумированный и заполненный водородом термостатированный стеклянный сосуд помещали навеску $Pd(acac)_2$ (0.0144 г, 4.73 × \times 10⁻⁵ моль) и цеолит NaZSM-5 (1 г), добавляли растворитель – ДМФА (50 мл) – и перемешивали в течение 60 мин при комнатной температуре. Затем восстанавливали Pd(acac), водородом при 80°C и давлении водорода 2 атм в течение 6 ч. Контроль осуществляли методом УФ-спектроскопии по полосе поглощения 330 нм $(\varepsilon_{330} = 10600 \text{ л моль}^{-1} \text{ см}^{-1})$. После охлаждения реакционной системы до комнатной температуры образец катализатора отделяли декантацией в атмосфере аргона, промывали бензолом и высушивали 3 ч при 60°C/2 Торр. Выход составил

0.9358 г. Элементный анализ, мас. %: Pd - 0.37. Условное обозначение: **0.5%Pd/NaZSM-5**. Аналогичным образом получали катализаторы с содержанием Pd, равным 1 и 3 мас. %. Условное обозначение **1%Pd/NaZSM-5** и **3%Pd/NaZSM-5** соответственно. Выход образца 1%Pd/NaZSM-5 - 0.9745 г. Элементный анализ, мас. %: Pd - 0.9. Выход образца 3%Pd/NaZSM-5 - 0.9974 г. Элементный анализ, мас. %: Pd - 2.5.

Пример 2 (3%Pd-0.3P/NaZSM-5). Для приготовления катализатора с начальным отношением P : Pd = 0.3, содержащего 3 мас. % Pd, в предварительно вакуумированный и заполненный водородом термостатированный стеклянный сосуд помещали навеску Pd(acac), (0.0898 г, 2.95×10^{-4} моль) и цеолит NaZSM-5 (1 г), добавляли растворитель — ДМФА (50 мл) — и перемешивали в течение 60 мин при комнатной температуре. В реакционную смесь по каплям добавляли предварительно полученный раствор белого фосфора в бензоле (2 мл, 0.9×10^{-4} моль), наблюдали изменение цвета раствора от желтого до темно-коричневого цвета. Перемешивали в течение 10 мин при комнатной температуре. Затем поднимали температуру до 80°C, создавали давление водорода 2 атм и перемешивали реакционную смесь до полного восстановления Pd(acac), водородом в течение 15 мин. Контроль осуществляли методом УФ-спектроскопии по полосе поглощения 330 нм ($\varepsilon_{330} = 10600$ л моль $^{-1}$ см $^{-1}$). После охлаждения реакционной системы до комнатной температуры образец катализатора отделяли декантацией в атмосфере аргона, промывали бензолом и высушивали 3 ч при 60°C/2 Торр. Выход составил 1.0350 г. Элементный анализ, мас. %: Pd - 2.61, P - 0.28. Условное обозначение: 3%Pd-0.3P/NaZSM-5. Аналогичным образом получали катализаторы с начальным отношением P : Pd = 0.7 и 1.0. Условное обозначение 3%Pd-0.7P/NaZSM-5 и 3%Pd-1.0P/NaZSM-5 соответственно. Выход образца 3% Pd-0.7P/ /NaZSM-5 составил 1.0740 г. Элементный анализ, мас. %: Pd - 2.43, P - 0.56. Выход образца 3% Pd --1.0P/NaZSM-5 равен 0.8848 г. Элементный анализ, мас. %: Pd - 1.73, P - 0.65.

Пример 3 (1%Pd/HZSM-5). В предварительно вакуумированный и заполненный водородом термостатированный стеклянный сосуд помещали навеску Pd(acac)₂ (0.0289 г, 9.494 × 10⁻⁵ моль) и цеолит HZSM-5 (1 г), добавляли растворитель — толуол (50 мл) — и перемешивали в течение 60 мин при комнатной температуре. Затем восстанавливали Pd(acac)₂ водородом при 80°C

и давлении водорода 2 атм в течение 15 мин до количественного превращения $Pd(acac)_2$. Контроль осуществляли методом $V\Phi$ -спектроскопии по полосе поглощения 330 нм. После охлаждения реакционной системы до комнатной температуры образец катализатора отделяли декантацией в атмосфере аргона, промывали бензолом и высушивали 3 ч при $60^{\circ}C/2$ Торр. Выход составил 0.9725 г. Элементный анализ, мас. %: Pd - 0.74. Условное обозначение: 1%Pd/HZSM-5.

Пример 4 (3%Pd-0.3P/HZSM-5). Pd-P-катализаторы на декатионированной форме цеолита ZSM-5 получали в среде толуола, т.к. высокая седиментационная устойчивость Pd-P-частиц в ДМФА затрудняла их нанесение на цеолит HZSM-5. Поэтому в качестве основного растворителя для синтеза катализаторов был выбран толуол. Pd-P-катализаторы в среде толуола получали восстановлением Pd(acac)₂ $(0.0887 \, \Gamma, \, 2.9134 \times 10^{-4} \, \text{моль})$ водородом в среде толуола (50 мл) в присутствии белого фосфора (P : Pd = 0.3 или 1.0) и цеолита HZSM-5 (1 г). Процесс вели при 80°C и давлении водорода 2 атм в течение 20 мин до количественного превращения Pd(acac)₂ и обесцвечивания раствора. После охлаждения реакционной системы в атмосфере аргона суспензию переносили в трехгорлую колбу. Образец катализатора отделяли декантацией в аргоне, промывали бензолом и высушивали 3 ч при 60° C/2 Торр. При P : Pd = 0.3 выход составил 1.0031 г. Элементный анализ, мас. %: Pd - 2.77, P - 0.19. Условное обозначение: 3%Pd-0.3P/HZSM-5. При P : Pd = 1.0 время восстановления -50 мин, выход -0.9385 г. Элементный анализ, мас. %: Pd - 2.83, P - 0.59. Условное обозначение: **3%Pd-1.0P/HZSM-5**.

Пример 5 (гидрирование еАО). В предварительно вакуумированный и заполненный водородом стеклянный термостатированный реактор периодического действия в токе водорода вносили навеску катализатора (2×10^{-5} моль Pd), смешанный растворитель (октанол-1 (10 мл)-толуол (7 мл)), температуру поднимали до 50°C, шприцом вводили 3 мл толуольного раствора 2-этил-9,10-антрахинона (0.5 г, 2.116 ммоль) и создавали давление водорода 2 атм. Гидрирование проводили при интенсивном перемешивании, исключающем протекание реакции в диффузионной области. Контроль за реакцией осуществляли по поглощению водорода с помощью манометра, а также методами УФ-спектроскопии и газожидкостной хроматографии (ГЖХ), отбирая пробы на анализ после поглощения 1 или 1.2 моль H_2 /моль eAQ.

Скорость гидрирования eAQ до eAQH₂ рассчитывали по углу наклона прямых участков кинетический кривых в диапазоне поглощения водорода 0.1-0.3 моль H_2 на моль субстрата. Расчет частоты оборотов (TOF) проводили по формулам (1)—(3):

$$TOF = \frac{a}{D_{\Pi \ni M}},\tag{1}$$

где a — каталитическая активность в расчете на весь палладий (моль_{субстрата} моль_{Рд общий} $^{-1}$ мин $^{-1}$), $D_{\Pi \ni M}$ — дисперсность, определенная из данных просвечивающей электронной микроскопии.

$$D_{\Pi \ni M} = \frac{6M_{\rm Pd}}{\rho_{\rm Pd} \times d_{\Pi \ni M} \times A_{\rm Pd} \times N_{\rm A}}, \qquad (2)$$

где $M_{\rm Pd}$ и $A_{\rm Pd}$ — атомная масса Pd (г/моль) и площадь поверхности атома Pd (м $^2_{\rm Pd}$ поверх.//атом $_{\rm Pd}$ поверх.) соответственно, р — плотность палладия, $N_{\rm A}$ — число Авогадро, $d_{\rm \Pi \ni M}$ — среднеповерхностный диаметр частиц.

$$d_{\Pi \ni M} = \frac{\sum_{i} n_{i} d_{i}^{3}}{\sum_{i} n_{i} d_{i}^{2}},$$
 (3)

где n_i — число частиц с диаметром d_i .

Концентрацию Н2О2 определяли спектрофотометрически. Для этого аликвоту реакционного раствора (2 мл), предварительно отделенного от катализатора через шприцевый фильтр, окисляли кислородом воздуха в течение 30-60 мин до образования раствора лимонно-желтого цвета. Затем добавляли 5 или 10 мл воды и экстрагировали пероксид водорода из органического слоя (2 мл) в воду (5 или 10 мл) при перемешивании. К аликвоте водного раствора H_2O_2 (1 мл) добавляли 0.1 мл насыщенного водного раствора $TiOSO_4$. При необходимости раствор H_2O_2 разбавляли водой. Через 1 мин после окрашивания раствора в желтый цвет из-за образования пероксидного комплекса титана определяли концентрацию H_2O_2 методом УФ-спектрофотометрии в кварцевой кювете толщиной 1 см по полосе поглощения 407 нм [30].

$${\rm H_2O_2} + {\rm TiO^{2+}} + {\rm H_2O} = {\rm Ti} \left({\rm O_2} \right) \! \left({\rm OH} \right)_2 + 2{\rm H^+}. \ \, ({\rm IV})$$

Состав побочных продуктов превращения 2-этил-9,10-антрахинона анализировали методами ГЖХ и хромато-масс-спектрометрии.

Методы исследования

ГЖХ-анализ eAQ и побочных продуктов его превращения проводили на хроматографе "Хроматэк-Кристалл 5000" ("Хроматэк", Россия), снабженном капиллярной колонкой длиной 30 м (фаза -5% дифенил 95% диметилполисилфениленсилоксан) и пламенно-ионизационным детектором (ДИП) по методу внутреннего стандарта, используя температурное программирование: 160°C (3 мин); 270°C (20 мин), скорость нагрева — 40°/мин. Параллельно идентификацию интермедиатов и продуктов реакции осуществляли на хромато-масс-спектрометре GCMS-QP2010 Ultra ("Shimadzu", Япония, капиллярная колонка GsBP·5MS длиной 30 м, фаза: поли(5% дифенил 95% диметилполисилфениленсилоксан)). Ионизация происходила электронным ударом, энергия ионизации 70 эВ. Полученные масс-спектры сравнивали с литературными данными (библиотеки сравнения Wiley, NIST, NIST05).

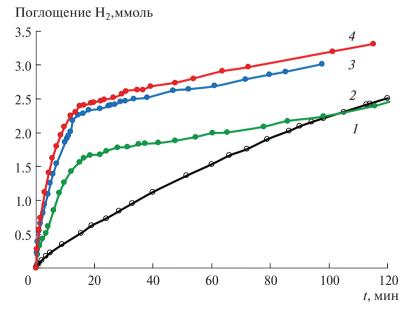
УФ-спектры реакционных растворов на стадии формирования катализатора снимали на спектрофотометре СФ-2000 (Россия) в кварцевых кюветах с толщиной поглощающего слоя 0.1 см. Контроль за превращением $Pd(acac)_2$ проводили по полосе поглощения 330 нм ($\epsilon_{330} = 10630$ л моль $^{-1}$ см $^{-1}$).

Анализ катализаторов методом масс-спектрометрии с индуктивно связанной плазмой (МС ИСП) выполнен на масс-спектрометре высокого разрешения ELEMENT 2 ("Finnigan MAT", Германия) после предварительного разложения образцов азотной кислотой.

Размер частиц катализатора определяли по ПЭМ-снимкам, полученным на электронном микроскопе Теспаі G2 ("FEI", США) при ускоряющем напряжении 200 кВ. Каплю суспензии катализатора в гексане наносили на науглероженную медную сетку (200 меш) и сушили при комнатной температуре в боксе в инертной атмосфере. Для определения среднего размера Pd—Рчастиц обрабатывали участок, содержащий не менее 200—300 частиц.

Рентгенофазовый анализ образцов выполнен на дифрактометре D8 ADVANCE ("Bruker", Германия), Си-излучение, 40 кВ, 40 мА, Ni-фильтр.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ


Тестирование свойств Pd—P-катализаторов, нанесенных на цеолит ZSM-5 в Nа- или H-формах при различных отношениях P : Pd, проведено в мягких условиях (T = 50°C, $P(H_2) = 2$ атм) в смешанном растворителе (октанол-1—толуол) из-за различной растворимости исходного субстрата (eAQ) и целевого продукта реакции (eAQH₂) в полярных и неполярных средах. Кинетические кривые гидрирования eAQ под действием катализаторов 3%Pd—nP/NaZSM-5 (n = 0.3, 0.7, 1.0) в виде структурно неупорядоченных твердых растворов фосфора в палладии, представлены на рис. 1. Как следует из рис. 1, модифицирование фосфором палладиевых катализаторов изменяет вид кинетических кривых.

На кривой гидрирования 2-этил-9,10-антрахинона под действием катализаторов Pd-nP/NaZSM-5 условно можно выделить два участка (рис. 1, кривые 2-4). Первый (начальный) участок, который характеризуется более высокой скоростью (5.2—7.8 ммоль π^{-1} мин $^{-1}$), соответствует преимущественно гидрированию еAQ. По данным ГЖХ, вклад побочных реакций на данном этапе незначителен. На втором участке кинетической кривой, соответствующем преимущественно течению побочных процессов, скорость реакции падает в 11-40 раз (рис. 1, кривые 2-4). С ростом начального отношения P:Pd от 0.3 до 1.0 активность Pd-P-катализа-

торов в гидрировании eAQ возрастает в 3 раза (табл. 1). Аналогичный вид кинетических кривых ранее наблюдался для коллоидных растворов Pd—P-частиц [6]. Следовательно, нанесение Pd—P-частиц на цеолитный носитель не оказывает значительного влияния на их природу.

Иная картина характерна для немодифицированных Pd-катализаторов: в рассматриваемый промежуток времени из-за низкой скорости реакции гидрирования еAQ на кривой отсутствует резкая смена кинетического режима (рис. 1, кривая *I*). В частности, соотношение скоростей реакции на 1-ом и 2-ом участках кривой гидрирования еAQ под действием катализатора 0.5% Pd/NaZSM-5 отличается лишь в 1.5 раза (рис. 1, кривая *I*). По активности в гидрировании еAQ образец 3% Pd—1.0P/NaZSM-5 превосходит катализатор 0.5% Pd/NaZSM-5 в 7.5 раз (табл. 1).

Столь значительное различие в скоростях основного и побочного процессов в ходе гидрирования eAQ в присутствии Pd-nP/NaZSM-5 благоприятно влияет на выход целевого продукта — 2-этил-9,10-антрагидрохинона (eAQH2) и, как следствие этого, H_2O_2 (табл. 1). Согласно уравнению (I), для превращения 2-этил-9,10-антрахинона в 2-этил-9,10-антрагидрохинон необходим 1 моль $H_2/м$ оль eAQ, но из-за течения побочных реакций гидрирования и гидрогенолиза eAQH2 полная конверсия eAQ обычно наблюдается при большем, чем эквимольном

Рис. 1. Кинетические кривые гидрирования eAQ под действием катализаторов 0.5% Pd/NaZSM-5 (*I*) и 3% Pd-nP/NaZSM-5 при n=0.3 (*2*), 0.7 (*3*), 1 (*4*). Условия реакции: T=50°C, $P(H_2)=2$ атм, v(eAQ)=2.116 ммоль, $v(Pd)=2\times 10^{-5}$ моль, растворитель — толуол—октанол-1 (10 мл : 10 мл).

№	Катализатор	Выход H_2O_2 , %	a , мин $^{-1}$	<i>ТОF</i> , мин−1 75	
1	0.5%Pd/NaZSM-5	76ª 776	2.5		
2	3%Pd-0.3P/NaZSM-5	81 ^a 92 ⁶	6.5	61	
3	3%Pd-0.7P/NaZSM-5	93a 996	12.8	140	
4	3%Pd-1.0P/NaZSM-5	99a 98.7 ⁶	18.9	185	
5	1%Pd/HZSM-5	72ª 62 ⁶	44.4	518	
6	3%Pd-0.3P/HZSM-5	94a 93.76	21.2	121	
7	3%Pd-1.0P/HZSM-5	93a 946	12.6	72	
8	3%Pd-0.3P/NaZSM-5*	59 ^B	0.9	_	

Таблица 1. Свойства Pd- и Pd-P-катализаторов в получении H₂O₂ антрахиноновым методом*

31д

35e

3%Pd-1.0P/NaZSM-5*

поглощении водорода (рис. 1). Под действием катализаторов 3% Pd-nP/NaZSM-5 после поглощения 1.2 моль H_2 /моль eAQ выход H_2 O $_2$ составляет 92, 99 и 99% при отношении P: Pd = 0.3, 0.7 и 1.0 соответственно (табл. 1). Основными побочными продуктами в реакционной системе являются изомеры H_4 eAQ H_2 (изо- H_4 eAQ H_2), а также 2-этил-9(10)-антроны (условное обозначение: антрон 1, антрон 2). При проведении процесса под действием катализатора 3%Pd-1.0P//NaZSM-5 обнаружены только следовые количества антронов (0.3%) в соотношении антрон 1: антрон 2 = 1: 2. Продукты гидрирования ароматического кольца eAQ H_2 по данным хромато-масс-спектрометрии вообще отсутствовали.

При уменьшении содержания палладия в катализаторе Pd-1.0P/NaZSM-5 от 3 до 0.5 мас. % активность в гидрировании eAQ практически остается неизменной (16 мин⁻¹), в то время как выход H_2O_2 незначительно уменьшается (с 99 до 90%). При этом наряду с антронами в реакционной системе обнаружены и продукты ги-

дрирования ароматического кольца (H_4 eAQ H_2) в соотношении H_4 eAQ H_2 : : изо- H_4 eAQ H_2 равном 5 (1%Pd-1.0P/NaZSM-5) и 55 (0.5%Pd-1.0P/NaZSM-5) соответственно.

0.6

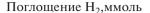
Выход H_2O_2 в присутствии немодифицированного катализатора 0.5% Pd/NaZSM-5 значительно ниже, чем под действием 3% Pd—nP/NaZSM-5. Он не превышает 77% после поглощения 1.2 моль H_2 /моль eAQ (табл. 1). Увеличение массового содержания палладия в катализаторах Pd/NaZSM-5 от 0.5 до 3% приводит лишь к падению и каталитической активности в гидрировании eAQ (от 2.6 до 1.1 мин $^{-1}$), и выхода H_2O_2 (от 76 до 49% соответственно) за один и тот же промежуток времени.

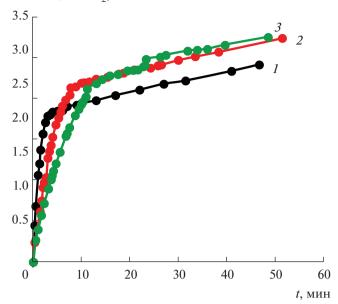
Следует отметить, что в большинстве случаев для немодифицированных палладиевых катализаторов также характерно наличие двух участков на кинетической кривой [7, 31]. Действительно, при изменении условий формирования Pd- и Pd—P-катализаторов, в частности, замены растворителя (ДМФА на толуол) и формы цеолита (NaZSM-5 на HZSM-5), на кинетических

^{*}Условия процесса: $v_{(Pd)} = 2 \times 10^{-5}$ моль; $v_{eAQ} = 2.116$ ммоль; растворитель — толуол (10 мл)—октанол-1 (10 мл), T = 50°C, $P(H_2) = 2$ атм.

a, 6После поглощения 1 и 1.2 моль H_2 (моль eAQ)-1 соответственно.

в, гЧерез 2 и 2.5 ч от начала реакции соответственно.


д, еЧерез 3 и 4 ч от начала реакции соответственно.


кривых как Pd-P-образцов, так и немодифицированного образца 1%Pd/HZSM-5 имеются два участка, которые резко различаются по скоростям (рис. 2).

В этом случае максимальная скорость гидрирования eAQ на первом участке наблюдается также для немодифицированного катализатора 1%Pd/HZSM-5. По активности в гидрировании eAQ катализаторы, нанесенные на цеолит HZSM-5, располагаются в ряд: 1%Pd/HZSM-5 (44 мин⁻¹) > 3%Pd-0.3P/HZSM-5 (21 мин⁻¹) > 3%Pd-1.0P/HZSM-5 (13 мин⁻¹).

В сравнении с образцом 1%Pd/HZSM-5 все полученные Pd-P-katanu3atoph (Pd-nP/NaZSM-5 и Pd-nP/HZSM-5) менее активны в гидрировании eAQ. Следует отметить, что с ростом отношения P: Pd от 0 до 1 активность в гидрировании eAQ падает, однако выход H_2O_2 под действием модифицированных фосфором катализаторов растет в следующем ряду: 1%Pd/HZSM-5 (72%) > 3%Pd-0.3P/HZSM-5 (94%) = 3%Pd-1.0P/HZSM-5 (94%). Т.е. для катализаторов Pd-nP/HZSM-5 (94%). Т.е. для катализаторов Pd-nP/HZSM-5 введение фосфора увеличивает селективность, но при этом происходит 2-3-кратное снижение активности в гидрировании eAQ.

Основными побочными продуктами превращения еАQН2 являются изомеры Н4еАQН2 и антроны, которые на Pd-P-катализаторах образуются в малых (следовых) количествах. При нанесении Pd на цеолит в H-форме возрастает вклад реакции гидрогенолиза еАQН2. Так, при использовании катализатора 1%Pd/HZSM-5 уже после поглощения 1 моль H₂/моль eAQ, по данным ГЖХ и хромато-масс-спектрометрии, в растворе присутствуют два изомера 2-этил-9(10)-антрона (антрон-1 (3.1%) и антрон-2 (5.9%)) в соотношении 1:2, и два изомера продуктов гидрирования ароматических колец (H_4 eAQ H_2 и изо- H_4 eAQ H_2) в соотношении 12.7: 1. При этом среди побочных продуктов (изомеров H₄eAQH₂ и антронов) при гидрировании eAQ под действием катализатора 1%Pd/HZSM-5 преобладают антроны. Их количество в 3 раза превышает содержание изомеров H_4 е AQH_2 . Доля антронов возрастает до 14.9% после поглощения 1.2 моль H_2 /моль eAQ. Это является отличительной чертой катализатора 1%Pd/HZSM-5, т.к. обычно скорость насыщения ароматических колец при использовании немодифицированных палладиевых катализаторов превалирует над скоростью гидрогенолиза связи С-ОН [8]. В то же время введение фосфора в состав палладиевых частиц в значительной

Рис. 2. Кинетические кривые гидрирования eAQ под действием катализаторов 1%Pd/HZSM-5 (*I*) и 3%Pd-nP//HZSM-5 при n=0.3 (*2*) и 1.0 (*3*). Условия реакции: $T=50^{\circ}$ C, $P(H_2)=2$ атм, v(eAQ)=2.116 ммоль, $v(Pd)=2\times10^{-5}$ моль, растворитель — толуол—октанол-1 (10 мл: 10 мл).

мере подавляет оба побочных процесса — и гидрогенолиз, и насыщение ароматических колец, увеличивая выход H_2O_2 .

На наш взгляд, причина роста вклада гидрогенолиза при проведении реакции гидрирования еАО под действием образца 1%Pd/HZSM-5 связана с декатионированной формой цеолитного носителя. В отличие от одно- и двухатомных фенолов бензольного ряда, для полициклических конденсированных ароматических соединений различие в термодинамической устойчивости фенольной и диеноновой формы резко уменьшается. В частности, для 9-дигидроксиантрацена термодинамически стабильной становится уже кето-форма антрона [32]. Устойчивость таутомерной кето-формы возрастает при переходе к полиатомным фенолам. Т.е. образующийся в ходе гидрирования eAQH₂ должен присутствовать в виде двух изомеров: в енольной и кето-форме [31]. На таутомерное равновесие в некоторой степени может влиять кислотно-основная среда. Образованию кето-формы благоприятствуют кислая среда [33] (схема 1):

Таутомеризация енольной-формы $eAQH_2$ в 2-этил-10-гидрокси-9-антрон (2-этилоксоантрон) ($II \rightarrow III$ на схеме 1) является стадией, предшествующей гидрогенолизу связи C-O в $eAQH_2$ [33]. Увеличение доли антронов в ходе

гидрирования eAQ под действием катализатора 1%Pd/HZSM-5 логично связать с участием протонов, компенсирующих заряд цеолитного каркаса, в смещении кето-енольного равновесия в сторону кето-формы.

Таким образом, экспериментальные данные однозначно указывают на промотирующее действие фосфора на селективность гидрирования еАО и, как следствие этого, на выход Н₂О₂ под действием палладиевых катализаторов, нанесенных на цеолит ZSM-5 в Na- и H-форме. Среди рассмотренных образцов наиболее эффективным оказался 3%Pd-0.3P/HZSM-5. По активности в гидрировании eAQ ($a = 21 \text{ мин}^{-1}$, S = 94%, T = 50°C, $P(H_2) = 2$ атм) катализатор 3%Pd-0.3P/HZSM-5 превосходит как образец 0.5%Pd-0.3P/C ($d = 3.6 \pm 0.9$ HM, a = 7 MUH $^{-1}$, S = 93%, T = 50°C, $P(H_2) = 2$ атм) [26], так и ряд литературных аналогов: Pd/SiO_2 ($a = 12 \text{ мин}^{-1}$, S = 65%, T = 62°C, $P(H_2) = 1$ atm) [7], Pd/Al₂O₃ $(a = 10 \text{ MUH}^{-1}, S = 80\%, T = 55^{\circ}\text{C}, P(H_2) = 1 \text{ atm})$ [34], Pd/PVP (d < 2 HM, a = 0.12 MUH⁻¹, S = 98%, T = 64°C, $P(H_2) = 2$ атм) [35], не уступая им по выходу Н₂О₂.

Причины модифицирующего действия фосфора на свойства катализаторов 3%Pd—nP/NaZSM-5 и 3%Pd—nP/HZSM-5, частицы которых представляют собой твердый раствор фосфора в палладии [36, 37], могут быть различными. Промотирующее действие фосфора на активность катализаторов 3%Pd—nP/NaZSM-5 в гидрировании eAQ, рассчитанной при 50-ной% конверсии субстрата, в сравнении с образцами Pd/NaZSM-5 логич-

но связать с изменением дисперсности образцов. Действительно, по данным ПЭМ [37, 38] среднечисленный размер высококонтрастных частиц уменьшается от 26.2 ± 8.7 нм (0.5%Pd/NaZSM-5) до 9.2 ± 1.8 нм (3%Pd-0.3P/NaZSM-5), 10.5 ± 2.4 нм (3%Pd-0.7P/NaZSM-5) и 9.6 ± 1.9 нм (3%Pd-1.0P/NaZSM-5) (рис. 3).

С ростом массового содержания палладия в образцах Pd/NaZSM-5 от 0.5 до 3% дисперсность снижается в 2.3 раза. Но даже образец 0.5%Pd/NaZSM-5 значительно уступает Pd—P-катализаторам по дисперсности (табл. 1). Именно этим и обусловлена очень малая активность немодифицированных палладиевых катализаторов 0.5%Pd/NaZSM-5 и 3%Pd/NaZSM-5, нанесенных на цеолит NaZSM-5, в гидрировании eAQ.

Более высокодисперсные системы образуются при формировании Pd-P-катализаторов в среде толуола и при нанесении на цеолит HZSM-5. В этом случае средний размер Pd- и Pd-P-частиц в катализаторах изменяется от 10.9 ± 2.9 нм (1 %Pd/HZSM-5) до 4.8 ± 1.6 нм (3%Pd-0.3P/HZSM-5) и 5.5 ± 1.2 нм (3%Pd-1.0P/HZSM-5) (рис. 4). При этом, несмотря на большую дисперсность Pd-P-образцов, они характеризуются меньшей активностью в гидрировании eAQ (табл. 1).

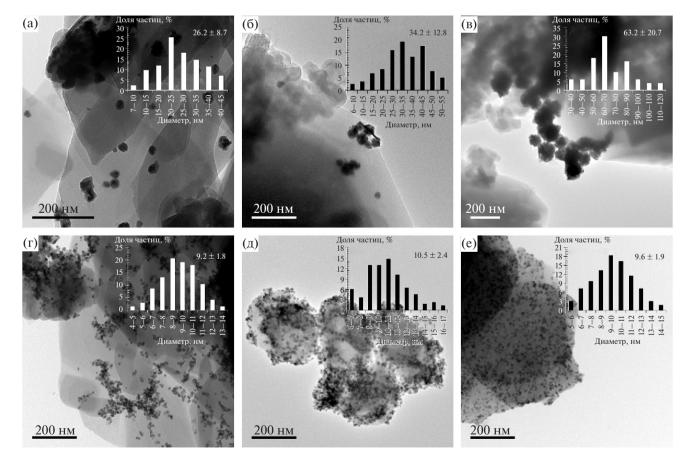
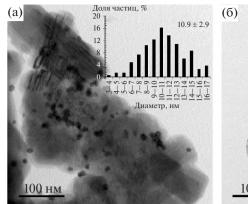
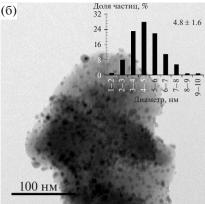

Однако дисперсность не является единственной причиной модифицирующего действия фосфора на свойства палладиевых катализаторов в гидрировании eAQ. Сравнение результатов кинетических экспериментов и данных ПЭМ

Схема 1. Схема побочного процесса — гидрогенолиза eAQH₂.


показывает, что размеры частиц катализаторов Pd-nP/NaZSM-5 ($n=0.3,\ 0.7,\ 1.0$) близки между собой, а выходы H_2O_2 в их присутствии отличаются. Также средние диаметры Pd-P- и Pd-частиц в образцах 3%Pd-nP/NaZSM-5 и 1%Pd/HZSM-5 близки, а активность и выход H_2O_2 различны (рис. 3, 4). Следовательно, введение фосфора в состав палладиевых катализаторов влияет и на другие их свойства. Основные характеристики Pd-P-образцов представлены в табл. 2.


По данным МС ИСП, во всех Pd—Р-катализаторах фосфор действительно присутствует. Экспериментально определенное соотношение P: Pd для образцов Pd—nP/NaZSM-5 близко к исходному, а для образцов Pd—nP/HZSM-5 ниже на 25—30% (табл. 2). Фосфор, входящий в состав палладийсодержащих частиц, наряду с изменением дисперсности, должен оказывать влияние на состояние поверхностного слоя катализаторов. Ранее методом рентгеновской фотоэлектронной спектроскопии (РФЭС) мы показали [21], что на поверхности Pd—P-частиц, нанесенных на цеолит NaZSM-5, преобладают

две химические формы Pd: Pd⁰ (E_{cB} (Pd3 $d_{5/2}$) = 335.3-335.4 $\bar{9}$ В) и $Pd^{\delta+}$ ($E_{cB}(Pd3d_{5/2})$ = = 336.4-336.6 эВ, $0 < \delta < 2$) (табл. 3). Фосфор на поверхности Pd-Р-частиц представлен только двумя окисленными формами: H₂PO₃- $(E_{cB}(P2p_{3/2})$ 133.6 эВ) PO_4^{3-} ($E_{cB}(P2p_{3/2})$ = 135.1 эВ). Отсутствие 3%Pd-0.3P/NaZSM-5 поверхности 3%Pd-1.0P/NaZSM-5 фосфора в виде фосфида связано с его небольшой поверхностной концентрацией и легкостью его окисления [21]. Данный вывод был подтвержден переводом образцов 3%Pd-0.3P/NaZSM-5 и 3%Pd-1.0P/NaZSM-5 В кристаллическое состояние путем термостатирования при 400°C в аргоне в течение 4 ч. По данным РФА, прокаленный образец 3%Pd-0.3P/NaZSM-5 (условное обозначение 3%Pd-0.3P/NaZSM-5*) содержит смесь Pd и фосфидов палладия Pd_3P , $Pd_3P_{0.95}$, $Pd_3P_{0.8}$ и Pd₆P [21]. После прокаливания образца 3%Pd-1.0P/NaZSM-5 методом РФА идентифицирован кристаллический фосфид Pd₃P [37].

Рис. 3. Снимки ПЭМ образцов 0.5% Pd/NaZSM-5 (a), 1.0% Pd/NaZSM-5 (б), 3.0% Pd/NaZSM-5 (в), 3.0% Pd-0.3P/NaZSM-5 (г), 3.0% Pd-0.7P/NaZSM-5 (д) и 3.0% Pd-1.0P/NaZSM-5 (е).

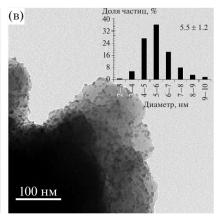


Рис. 4. Снимки ПЭМ образцов 1% Pd/HZSM-5 (a), 3.0%Pd-0.3P/HZSM-5 (б) и 3.0%Pd-1.0P/HZSM-5 (в).

После удаления поверхностных фосфатов/ фосфитов диметиламмония термостатированием образца 3% Pd-0.3P/NaZSM-5 при 400°C методом РФЭС были зафиксированы энергии связи Pd и P, соответствующие фосфидам ($E_{\rm CB}$ (Pd $3d_{5/2}$) = =335.5 эB, $E_{\rm CB}$ (P2 $p_{3/2}$) = 129.5 эB) [21] (табл. 3).

С одной стороны, наличие различных поверхностных химических форм палладия важно как для активации H_2 , так и еAQ. В хемосорбции водорода активнее металлические ансамбли с более высокой электронной плотностью на Pd [39, 40]. В то же время, по мнению авторов [41], электронодефицитные атомы Pd могут выступать в качестве электрофильных центров для адсорбции и активации карбонильной группы еAQ по механизму электрофильной активации С=О. Однако для исследованных прокаленных и непрокаленных образцов 3%Pd—nP/NaZSM-5 отсутствует корреляционная зависимость между соотношением химических форм палладия на поверхности катализаторов и их свойствами

в гидрировании eAQ (табл. 1, 3). В частности, несмотря на близость поверхностных концентраций Pd^0 и $Pd^{\delta+}$ (0.71 ат.% Pd^0 , 0.16 ат.% $Pd^{\delta+}$ для 3%Pd-0.3P/NaZSM-5* и 0.78 ат % Pd^0 , 0.19 ат.% $Pd^{\delta+}$ для 3%Pd-1.0P/NaZSM-5 [21]), свойства образцов 3%Pd-0.3P/NaZSM-5* и 3%Pd-1.0P/NaZSM-5* и 3%Pd-1.0P/NaZSM-5* и 3%Pd-1.0P/NaZSM-5* в гидрировании eAQ значительно отличаются. Кроме того, поверхностная концентрация Pd^0 в образце 3%Pd-0.3P/NaZSM-5* в 2 раза больше, чем в непрокаленном образце 3%Pd-0.3P/NaZSM-5*, а активность в 7 раз ниже (табл. 1). Резкое снижение активности в гидрировании eAQ наблюдалось и при использовании катализатора 3%Pd-1.0P/NaZSM-5* (табл. 1).

Столь значительное падение активности при переходе от структурно неупорядоченных твердых растворов фосфора в палладии к кристаллическим фосфидам нельзя объяснить уменьшением дисперсности катализаторов. Средней размер высококонтрастных частиц в образце 3%Pd—1.0P/NaZSM-5 до прокаливания равен

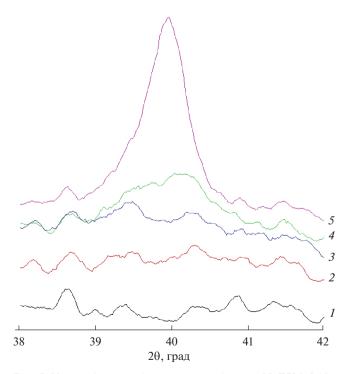
Таблица 2. Характеристика Pd- и Pd—P-катализаторов

Катализатор	Массовое содержание Pd и P, % (МС ИСП) Pd P		Массовое содержание Pd, % (AAA)	Отно- шение Р : Pd (эксп.)	$d_{ m a}{}^a$, нм (ПЭМ)	d _{ПЭМ} ⁶ , нм (ПЭМ)	$D_{\Pi ightarrow M}^{ m B}, \%$
0.5%Pd/NaZSM-5	0.43	_	0.37	_	26.2 ± 8.7	31.6	3.35
3%Pd-0.3P/NaZSM-5	2.61	0.28	2.55	0.37	9.2 ± 1.8	9.9	10.7
3%Pd-0.7P/NaZSM-5	2.43	0.56	2.53	0.79	10.5 ± 2.4	11.6	9.1
3%Pd-1.0P/NaZSM-5	1.73	0.65	1.64	1.28	9.6 ± 1.9	10.4	10.2
1%Pd/HZSM-5	0.74	_	0.73	_	10.9 ± 2.9	12.3	8.6
3%Pd-0.3P/HZSM-5	2.77	0.19	2.83	0.23	4.8 ± 1.6	6.0	17.5
3%Pd-1.0P/HZSM-5	2.83	0.59	2.84	0.71	5.5 ± 1.2	6.0	17.5

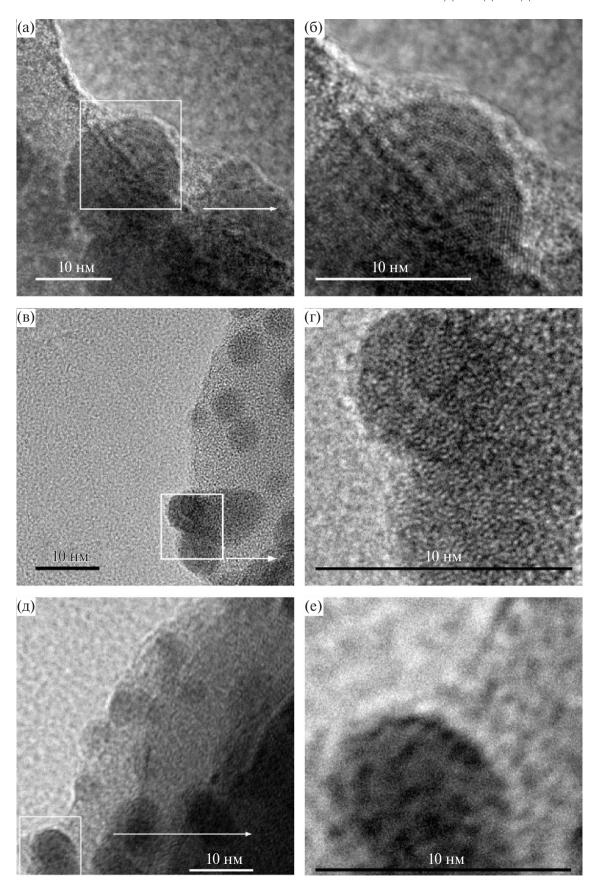
 $[^]ad_a$ — среднеарифметический диаметр; $^6d_{\Pi ext{OM}}$ — среднеповерхностный диаметр; $^bD_{\Pi ext{OM}}$ — дисперсность.

Таблица 3. Основные данные РФЭС образцов Pd- и Pd-P-катализаторов (по результатам [21])

	Энергия связи, эВ (концентрация, ат. %)						
Катализатор	D 12 /	P2p					
	$Pd3d_{5/2}$	$H_2PO_3^-$	PO ₄ 3-	Pd_xP			
	335.4 (0.05)						
3%Pd/NaZSM-5	336.3 (0.05)	_	_	_			
	338.2 (0.02)						
	335.4 (0.36)		135.2 (0.24)				
3%Pd-0.3P/NaZSM-5	336.6 (0.40)	133.8 (0.35)		_			
	338.2 (0.09)						
	335.5 (0.71)						
3%Pd-0.3P/NaZSM-5*	336.2 (0.16)	133.8 (0.28)	_	129.5 (0.07)			
	338.1 (0.06)						
	335.4 (0.78)						
3%Pd-1.0P/NaZSM-5	336.6 (0.19)	133.3 (1.3)	134.2 (1.4)	_			
	338.2 (0.13)						


Прочерки означают отсутствие соответствующих форм фосфора.

 9.6 ± 1.9 нм, а после термостатирования при 400° С он составляет 9.3 ± 4.8 нм. Изменения в среднем размере частиц до и после прокаливания находятся на уровне погрешности их определения.


С ростом отношения P: Pd, с одной стороны, возрастает поверхностная концентрация фосфат- и фосфит-ионов в катализаторах Pd-nP/NaZSM-5. С другой стороны, изменяется структурная упорядоченность Pd—P-частиц. В частности, на дифрактограмме катализатора 3%Pd-0.3P/NaZSM-5 кроме рефлексов носителя регистрируется только уширенный пик в области углов отражения 2θ 35° – 45° (рис. 5. дифрактограмма 4). Центр тяжести широкого пика в этой области дифракции $(2\theta = 40^\circ)$ совпадает как с межплоскостным расстоянием грани Pd(111), так и рефлексами фосфидов, обогащенных палладием. Несмотря на близкое массовое содержание палладия в образцах 3%Pd/NaZSM-5 и 3%Pd-0.3P/NaZSM-5. интенсивность пика в области 20 40° для образца 3%Pd-0.3P/NaZSM-5 меньше, а полуширина больше, чем у 3%Pd/NaZSM-5 (рис. 5, дифрактограммы 4, 5). Для катализаторов 3%Pd-0.7P/NaZSM-5 и 3%Pd-1.0P/NaZSM-5 рефлексы в области углов дифракции 40° вообще не наблюдаются, что указывает на их квазиаморфный характер.

Отсутствие рефлексов Pd в области углов 2θ 40° на рентгенограмме образцов 3%Pd-0.7P/NaZSM-5 и 3%Pd-1.0P/NaZSM-5 указывает на то, что периодичность структуры

в Pd—P-частицах распространяется менее чем на 2—3 нм [42]. Т.к. атомный радиус фосфора в фосфидах (0.109 нм) существенно больше, чем углерода (0.071 нм) или азота (0.065 нм), то атом фосфора не вписывается в обычные октаэдрические пустоты, образованные атомами металла с плотной упаковкой. Поэтому с ростом отно-

Рис. 5. Узкая область дифрактограмм образцов NaZSM-5 (*I*), 3%Pd-1.0P/NaZSM-5 (*2*), 3%Pd-0.7P/NaZSM-5 (*3*), 3%Pd-0.3P/NaZSM-5 (*4*) и 3%Pd/NaZSM-5 (*5*).

Рис. 6. Снимки ПЭМ ВР образцов Pd-1.0P/NaZSM-5 (a-6), Pd-0.3P/HZSM-5 ($B-\Gamma$) и Pd-1.0P/HZSM-5 (д-e).

КИНЕТИКА И КАТАЛИЗ том 65 № 6 2024

шения P: Pd в твердом растворе P в Pd структурная неупорядоченность Pd—P-катализаторов, полученных в мягких условиях, возрастает. По данным $P\Phi A$, эффективные в гидрировании eAQ катализаторы 3%Pd—0.3P/HZSM-5 и 3%Pd—1.0P/HZSM-5 также находятся в рентгеноаморфном состоянии. Вывод о квазиаморфном характере образцов, сделанный на основе анализа дифрактограмм, согласуется с данными Π ЭМ BP (рис. 6). Высокий выход H_2O_2 в присутствии аморфных Ni—B- и Ni—Cr—B-сплавов, в отличие от кристаллических никелевых катализаторов, из-за их меньшей, чем у Ni Pehes, активности в гидрировании ароматических колец отмечалось и в работе [43].

С одной стороны, вхождение фосфора в состав частиц палладиевого катализатора уменьшает концентрацию так называемого "неселективного" водорода в приповерхностном слое [44], который благоприятствует протеканию побочных процессов. С другой стороны, рентгеноаморфное состояние Pd-P-образцов может влиять на адсорбционную структуру молекул eAQ и, как следствие этого, на теплоту адсорбции и вклад побочных процессов. Мостиковая адсорбционная структура eAQ, которая включает два σ- и шесть π-взаимодействий между еАО и гранью Pd(111), более устойчива, чем перпендикулярная ориентация молекулы еАО по кислороду С=О-группы [45]. Для насыщения ароматических колец алкилантрахинонов также более благоприятны кристаллиты палладия, содержащие грань Pd(111) [46]. В свою очередь, размер ОКР кристаллитов палладия влияет на соотношение скоростей двух побочных процессов - насыщения ароматического кольца и гидрогенолиза связи С-ОН в eAQH₂ [6, 47]. Мелкие кластеры палладия (1.5-3 нм) в системах циглеровского типа ускоряют преимущественно гидрирование ароматических колец 2-этил-9,10-антрагидрохинона, крупные звездоподобные кристаллиты – 2-этил-9,10-антрагидрохинона. гидрогенолиз

В то же время вхождение фосфора в кристаллическую решетку палладия, как и наличие на поверхности фосфат/фосфит- ионов способствуют разбиению ансамблей палладия. При этом твердые растворы фосфора в палладии содержат более прочносвязанный водород, не выгодный для гидрирования ароматического кольца [48].

Таким образом, уменьшение концентрации "неселективного" водорода при внедрении фосфора в кристаллическую решетку палладия, более прочносвязанный водород в твердых растворах фосфора в палладии и изменение адсорбционной структуры молекулы еАQ могут быть ответственны за модифицирующее действие фосфора на свойства палладиевых катализаторов. Однако, используя только эти данные, сложно объяснить столь резкое падение активности кристаллических фосфидов палладия, в которых также реализуется разбиение ансамблей палладия.

Известно, что восстановление хинонов сильными восстановителями (LiAlH₄, NaBH₄, SnCl₂ в сочетании с HCl, Zn в сочетании с CH₃COOH) протекает в две стадии. На первой стадии одно-электронное восстановление приводит к образованию анион-радикала (семихинона). Присоединение на второй стадии еще одного электрона дает дианион, который в кислой среде превращается в двухатомный фенол (схема 2).

Аналогичный механизм гидрирования eAQ на кластерах Pd_6H_2 на основе квантовохимических исследований предложен в работе [49]. При этом электрон от атома водорода передается не напрямую к электроноакцепторной реакционноспособной группе C=O. Перенос электронной плотности между алкилантрахиноном и Pd_6H_2 происходит по пути: активный водород \rightarrow атом $Pd_H \rightarrow$ атом $C_4 \rightarrow$ карбонильная группа. Т.е. атомы Pd_H и C_4 действуют как мостик для переноса электронов от активного водорода к карбонильной группе алкилантрахинона. Если механизм гидрирования eAQ под действием Pd-P-катализаторов аналогичен, то резкое падение катали

Схема 2. Схема восстановления хинона сильными восстановителями.

тической активности при переводе структурно неупорядоченных твердых растворов фосфора в палладии в кристаллическое состояние может быть следствием уменьшения их электрической проводимости.

ЗАКЛЮЧЕНИЕ

Установлено промотирующее действие фосфора на селективность гидрирования еАО и дисперсность образцов 3%Pd-nP/NaZSM-5 и 3% Pd-nP/HZSM-5 ($n = 0 \div 1.0$). Выход H_2O_2 в методе гидрирование/окисление eAQ возрастает от 72-77% (1%Pd/HZSM-5) до 92-99% для Pd—Р-катализаторов. Невысокое значение селективности под действием немодифицированного образца 1%Pd/HZSM-5 обусловлено преимущественно увеличением вклада побочного процесса – образования антронов – в сравнении с насыщением ароматических колец еАQН₂. Ускорение гидрогенолиза еАQН2 происходит в результате смещения кето-енольного равновесия в кето-форму с участием протонов цеолитного носителя. Несмотря на снижение активности Pd-P-катализаторов в гидрировании еАО в сравнении с немодифицированным 1%Pd/HZSM-5, наиболее эффективный образец 3%Pd-0.3P/HZSM-5 по активности ($a = 21 \text{ мин}^{-1}$) превосходит такие литературные аналоги как Pd/SiO_2 , Pd/Al_2O_3 , Pd/PVP, не уступая им по выходу H_2O_2 (94%). Модифицирующее действие фосфора на свойства палладиевых катализаторов в гидрировании eAQ обусловлено рядом факторов: повышением дисперсности, изменением поверхностных концентраций фосфат- и фосфит-ионов и формированием рентгеноаморфных структурно неупорядоченных твердых растворов фосфора в палладии.

ФИНАНСИРОВАНИЕ

Исследование выполнено в рамках государственного задания в сфере научной деятельности Минобрнауки России (FZZE-2023-0006; соглашение № 075-03-2023-036).

БЛАГОДАРНОСТИ

Исследование выполнено с использованием оборудования центра коллективного пользования аналитическим оборудованием ИГУ (http://ckp-rf.ru/ckp/3264/), "Байкальского центра нанотехнологий" ИРНИТУ (электронный микроскоп Теспаі G2) и ЦКП Изотопно-геохимических ис-

следований (масс-спектрометр высокого разрешения ELEMENT 2). Цеолиты NaZSM-5 и HZSM-5 предоставлены к.х.н. Скорниковой С.А.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Menegazzo F., Signoretto M., Ghedini E., Strukul G. //* Catalyst. 2019. V. 9. № 3. P. 251.
- 2. *Ranganathan S., Sieber V.* // Catal. 2018. V. 8. № 9. P. 379.
- 3. *Мухортова Л.И., Ефимов Ю.Т., Глушков И.В., Константинова Т.Г.* Химия и технология пероксида водорода: учебное пособие. Чебоксары: Изд-во Чуваш. ун-та, 2020. 104 с.
- 4. Liang J., Wang F., Li W., Zhang J., Guo C.-L. // Mol. Catal. 2022. V. 524. Art. 112264.
- 5. Campos-Martin J.M., Blanco-Brieva G., Fierro J.L. // Angew. Chem. Int. Ed. 2006. V. 45. № 42. P. 6962.
- 6. Стеренчук Т.П., Белых Л. Б., Скрипов Н.И., Санжиева С.Б., Гвоздовская К.Л., Шмидт Ф.К. // Кинетика и катализ. 2018. Т. 59. № 3. С. 286. (Sterenchuk T. P., Belykh L. B., Skripov N. I., Sanzhieva S.B., Gvozdovskaya K. L., Schmidt F. K. // Kinetics and Catalysis. 2018. V. 59. No. 5. P. 585.)
- 7. Drelinkiewicz A., Waksmundzka-Gora A. // J. Mol. Catal. A. Chem. 2006. V. 246. P. 167
- Petr J., Kurc L., Belohlav Z., Cervený L. // Chem. Eng. Process. 2004. V. 43. P. 887.
- 9. Priyadarshini P., Ricciardulli T., Adams J.S., Yun Y. S., Flaherty D.W. // J. Catal. 2021. V. 399. P. 24.
- Paunovic V., Ordomsky V.V., Sushkevich V.L., Schouten J.C., Nijhuis T.A. // ChemCatChem. 2015. V. 7. P. 1161.
- 11. Bi R., Wang Q., Miao C., Feng J., Li D. // Catal. Lett. 2019. V. 149. P. 1286.
- 12. *Ingle A.A.*, *Ansari S.Z.*, *Shende D.Z.*, *Wasewar K.L.*, *Pandit A.B.* // Environ. Sci. Pollut. Res. Int. 2022. V. 29. № 57. P. 86468.
- 13. *Zhang J., Gao K., Wang S., Li, W., Han Y.* // RSC Adv. 2017. V. 7. № 11. P. 6447.
- 14. Yuan E., Wu C., Hou X., Dou M., Liu G., Li G., Wang L. // J. Catal. 2017. V. 347. P. 79.
- 15. *Han Y., He Z., Wang S., Li W., Zhang J.* // Catal. Sci. Technol. 2015. V. 5. P. 2630.
- Ferrin P., Kandoi S., Nilekar A.U., Mavrikakis M. // Surf. Sci. 2012. V. 606. № 7. P. 679.
- 17. Li W., Wang F., Zhang X., Sun M., Hu J., Zhai Y., Lv G. // Appl. Catal. A: Gen. 2021. V. 619. Art. 118124.
- 18. *Li X, Su H, Ren G, Wang S.* // Appl. Catal. A: Gen. 2016. V. 517. P. 168.

- Liu Y., McCue A.J., Li D. // ACS Catal. 2021. V. 11. P. 9102.
- Belykh L.B., Skripov N.I., Sterenchuk T.P., Kornaukhova T.A., Milenkaya E.A., Schmidt F.K. // Mol. Catal. 2022. V. 528. Art. 112509.
- 21. Белых Л.Б., Скрипов Н.И., Стеренчук Т.П., Акимов В.В., Таусон В.Л., Лихацкий М.Н., Миленькая Е.А., Корнаухова Т.А., Шмидт Ф.К. // Кинетика и катализ. 2023. Т. 64. № 6. С. 749.
- 22. Li D., Su H., Yan H., Yang X., Zhou J., Wang S. // Catal. 2022. V. 12. P. 1156.
- 23. *Li A., Wang Y. H., Ren J., Zhang J. L., Li W., Guo C.L.* // Appl. Catal. A: Gen. 2020. V. 593. Art. 117422.
- 24. Wu Z.-Y., Nan H., Shen S.-C., Chen M.-X., Liang H.-W., Huang C.-Q., Yao T., Chu S.-Q., Li W.-X., Yu S.-H. // CCS Chem. 2022. V. 4. P. 3051.
- 25. Белых Л.Б., Стеренчук Т.П., Скрипов Н.И., Акимов В.В., Таусон В.Л., Романченко А.С., Гвоздовская К.Л., Санжиева С.Б., Шмидт Ф.К. // Кинетика и катализ. 2019. Т. 60. № 6. С. 788. (Belykh L.B., Sterenchuk T.P., Skripov N.I., Akimov V. V., Tauson V. L., Romanchenko A. S., Gvozdovskaya K. L., Sanzhieva S. B., Shmidt F. K. // Kinet. Catal. 2019. V. 60. № 6. P. 805.)
- 26. Belykh L.B., Skripov N.I., Sterenchuk T.P., Akimov V.V., Tauson V.L., Savanovich T.A., Schmidt F.K. // Appl. Catal. A: Gen. 2020. V. 589. Art. 117293.
- 27. Belykh L.B., Skripov N.I., Sterenchuk T.P., Akimov V. V., Tauson V.L., Milenkaya E.A., Schmidt F.K. // Eur. J. Inorg. Chem. 2021. V. 44. P. 4586.
- 28. *Гордон А., Форд Р.* Спутник химика. Москва: Мир, 1976. 572 с. (*Gordon A.J., Ford R.A.* The Chemist's Companion. New-York: Wiley & Sons, 1972.)
- 29. *Matthews J.C., Nashua N.H., Wood L.L.* USA Patent 3,474,464, 1969.
- 30. Sandri F., Danieli M., Zecca M., Centomo P. // Chem-CatChem. 2021. V. 13. P. 2653.
- 31. Drelinkiewicz A., Waksmundzka-Gora A. // J. Mol. Catal. A: Chem. 2006. V. 246. P. 167.
- 32. *Реутов О.А., Курц А.Л., Бутин К.П.* Органическая химия в 4 частях. Москва: БИНОМ. Лаборатория знаний, 2010. 544 с.
- 33. Drelinkiewicz A., Laitinen R., Kangas R., Pursiainen J. // Appl. Catal. A: Gen. 2005. V. 284. P. 59.

- 34. Kosydar R., Drelinkiewicz A., Lalik E., Gurgul J. // Appl. Catal. A: Gen. 2011. V. 402. P. 121.
- Drelinkiewicz A., Hasik M. // J. Mol. Catal. A: Chem. 2001. V. 177. P. 149.
- 36. *Белых Л.Б.*, *Миленькая Е.А.*, *Скрипов Н.И.*, *Корна-ухова Т.А.*, *Шмидт Ф.К.* // Кинетика и катализ. 2024. В печати.
- 37. Belykh L.B., Skripov N.I., Sterenchuk T.P., Milenkaya E.A., Kornaukhova T.A., Schmidt F.K. // Appl. Catal. A: Gen. 2023. V. 664. Art. 119330.
- 38. Белых Л.Б., Скрипов Н.И., Стеренчук Т.П., Акимов В.В., Таусон В.Л., Лихацкий М.Н., Миленькая Е.А., Корнаухова Т.А., Шмидт Ф.К. // Кинетика и катализ. 2023. Т. 64. № 6. С. 749. (Belykh L.B., Skripov N.I., Sterenchuk T.P., Akimov V.V., Tauson V.L., Likhatski M.N., Milenkaya E.A., Kornaukhova T.A., Schmidt F.K. // Kinet. Catal. 2023. V. 64. № 6. P. 804.)
- 39. Николаев С.А., Занавескин Л.Н., Смирнов В.В., Аверьянов В.А., Занавескин К.Л. // Успехи химии. 2009. Т. 78. № 3. С. 248. (Nikolaev S.A., Smirnov V.V., Zanaveskin L.N., Zanaveskin, K.L., Averyanov V.A. // Russ. Chem. Rev. 2009. V. 78. № 3. P. 231.)
- 40. Bi R., Wang Q., Miao C., Feng J., Li D. // Catal. Lett. 2019. V. 149. P. 1286.
- 41. Zhang J., Gao K., Wang S., Lia W., Han Y. // RSC Adv. 2017. V. 7. P. 6447.
- Clausen B.S., Topsoe H., Frahm R. // Adv. Catal. 1998.
 V. 42. P. 315.
- 43. Fang J., Chen X., Liu B., Yan S., Qiao M., Li H., He H., Fan K. // J. Catal. 2005. V. 229 P. 97.
- 44. *Stojewski M., Kowalska J., Jurczakowski R.* // J. Phys. Chem. C. 2009. V. 113. № 9. P. 3707.
- 45. Kamachi T., Ogata T., E. Mori, K. Iura, N. Okuda, M. Nagata, K. Yoshizawa // J. Phys. Chem. C. 2015. V. 119. P. 8748.
- 46. Maccarrone M.J., Lederhos C.R., Torres G., Betti C., Coloma-Pascual F., Quiroga M.E., Yori J.C. // Appl. Catal. A: Gen. 2012. V. 90. P. 441.
- 47. Belykh L.B., Skripov N.I., Sterenchuk T.P., Schmidt F.K. // Catal. Commun. 2020. V. 146. Art. 106124.
- 48. Flanagan B.T.B., Biehl G.E., Clewley J.D., Kund-qvist S., Anderson Y. // J.C.S. Faraday I. 1980. V. 76. P. 196
- 49. *Yuan E., Wang L., Zhang X., Feng R., Wu C., Li G.* // ChemPhysChem. 2016. V. 17. P. 3974.

Effective Catalysts Based on Palladium-Phosphorus Particles for Hydrogen Peroxide Production by the Anthrahquinone Method

L. B. Belykh^{1, *}, T. A. Kornaukhova¹, N. I. Skripov¹, E. A. Milenkaya¹, A. A. Maltsev¹, and F. K. Schmidt¹

^aIrkutsk State University, K. Marx, 1, Irkutsk, 664003 Russia *e-mail: belykh@chem.isu.ru

The properties of Pd–P catalysts supported on ZSM-5 zeolite in H- and Na-forms in the hydrogenation of 2-ethyl-9,10-anthraquinone under mild conditions were studied. The size and phase composition of Pd–P particles were determined using transmission electron microscopy and X-ray powder diffraction analysis. The promoting effect of phosphorus on the dispersion of palladium catalysts and the yield of H_2O_2 has been established. The influence of the decationized form of the zeolite support on the properties of palladium catalysts in the hydrogenation of 2-ethyl-9,10-anthraquinone was considered. It was shown that the deposition of Pd on HZSM-5 zeolite increases the contribution of 2-ethyl-9,10-anthrahydroquinone hydrogenolysis, reducing the yield of H_2O_2 . Modification of palladium catalysts with phosphorus significantly suppresses both side processes: saturation of aromatic rings and hydrogenolysis of the C–OH bond of 2-ethyl-9,10-anthrahydroquinone. With an increase in the P:Pd ratio from 0 to 1.0, the yield of H_2O_2 increases from 72–77 to 92–99%. The main reasons for the promoting effect of phosphorus are discussed.

Keywords: hydrogen peroxide, 2-ethyl-9,10-anthraquinone, hydrogenation, palladium, phosphorus, XRD, TEM

FUNDING

The study was supported by the Ministry of Education and Science of Russia under the government contract (topic code: FZZE-2023-0006; agreement no. 075-03-2023-036).