===== МИНИ-ОБЗОР =

УДК 544.476.2; 544.478-03; 544.478.41

ОКСИД АЛЮМИНИЯ В ФОРМИРОВАНИИ АКТИВНЫХ ЦЕНТРОВ КОБАЛЬТОВЫХ КАТАЛИЗАТОРОВ СИНТЕЗА ФИШЕРА—ТРОПША

© 2024 г. Л. В. Синева^{а, *}, Е. Ю. Асалиева^а, В. З. Мордкович^а

^аНИЦ Курчатовский институт — ТИСНУМ, ул. Центральная, 7а, Москва, Троицк, 108840 Россия *e-mail: sinevalv@tisnum.ru

Поступила в редакцию 31.05.2024 г. После доработки 03.09.2024 г. Принята к публикации 18.09.2024 г.

Мини-обзор посвящен роли оксида алюминия, применяемого в качестве носителя и/или связующего, в формировании активных центров кобальтовых катализаторов синтеза Фишера—Тропша. Показаны некоторые особенности физико-химических свойств Al_2O_3 , знание которых может быть полезным при разработке новых катализаторов. Продемонстрированы возможности для улучшения каталитических характеристик за счет оптимизации формы и размера частиц, а также степени восстановления Со при использовании Al_2O_3 в качестве носителя или компонента носителя. Библиография: 75 ссылок.

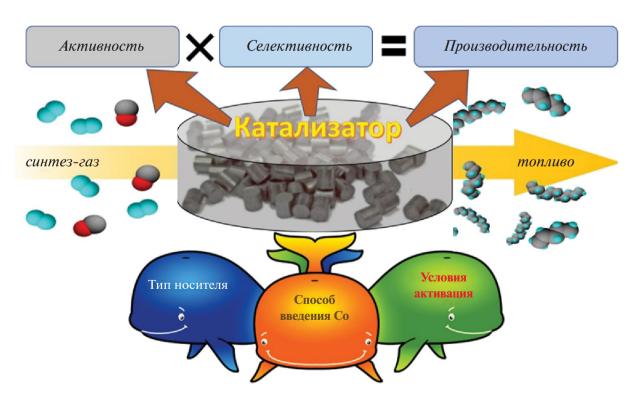
Ключевые слова: синтез Фишера—Тропша, кобальтовые катализаторы, оксид алюминия, гетерогенный катализ, активные центры

DOI: 10.31857/S0453881124060016, **EDN:** QKVYOG

ВВЕДЕНИЕ

Синтез Фишера-Тропша (СФТ), несмотря на свою 100-летнию историю, продолжает оставаться в поле зрения ученых как альтернативный источник углеводородного сырья для производства экологически чистого моторного топлива или других химических веществ [1]. В низкотемпературном СФТ, направленном на производство длинноцепочечных углеводородов используют, как правило, нанесенные кобальтовые катализаторы, которые обычно состоят из кобальта в его металлической форме (Со0), диспергированного в виде небольших наночастиц (до 20 нм) на микропористой/мезопористой поверхности оксидного носителя (чаще всего Al_2O_3 , SiO_2 или TiO_2). Считается, что частицы Со⁰ являются основными активными центрами, поскольку они присутствуют до, после и во время СФТ [2-6]. Свежеприготовленные кобальтовые катализаторы СФТ, как правило, представляют собой оксид (реже — соль) кобальта, расположенный на поверхности оксидного носителя. Для получения металлического кобальта необходима процедура активации (или восстановления), которую проводят в потоке водородсодержащего газа. Условия процедуры (температура, длительность, состав и скорость подачи газа-восстановителя) зависят от состава катализатора и технологических особенностей.

СФТ представляет собой поверхностно-катализируемую и структурно-чувствительную реакцию. Его показатели зависят от размера частиц и структуры металла, степени его взаимодействия с носителем, а также степени его восстановления и дисперсности [2–12]. В свою очередь свойства катализатора во многом зависят от носителя, тип и структура которого в значительной степени определяют взаимодействие металлноситель, пористую структуру и активную поверхность, а, следовательно, массообмен на поверхности катализатора, влияя тем самым на его каталитические свойства, такие как активность, селективность и стабильность (рис. 1). Для обеспечения достаточной дисперсности кобальта, как правило, необходимо сильное взаимодействие металл-носитель, в противном случае кристаллиты кобальта могут агрегироваться с образованием крупных частиц и приводить к быстрой дезактивации катализатора. С другой стороны, сильное взаимодействие металл-носитель может приводить к росту температуры восстановления катализатора, препятствуя появлению активных центров Со0.


Таким образом, одним из важных направлений для развития СФТ является повышение

активности катализатора за счет увеличения количества активных центров металлического кобальта, стабильных в условиях реакции.

Несмотря на то, что катализаторы на основе оксида алюминия известны давно и, в частности, применяются компанией SASOL в промышленном масштабе более 40 лет, Al₂O₃ по-прежнему остается интересным объектом для исследования в качестве носителя Со катализаторов СФТ. Такая популярность связана с его низкой стоимостью, хорошей термической стабильностью и механической прочностью. Важным свойством является и его способность хорошо диспергировать активную фазу на своей поверхности. Эта способность обусловлена, в числе прочего, относительно сильным взаимодействием Со-носитель, которое более выражено, чем у SiO_2 , но слабее, чем у TiO_2 . Al_2O_3 может быть получен в различных кристаллических модификациях — γ -Al₂O₃, θ -Al₂O₃, α -Al₂O₃ и η -Al₂O₃, наиболее востребованным из которых является γ-Al₂O₃. Кроме того, оксид алюминия присутствует в качестве связующего во многих гранулированных носителях, например, широко используемый бемит при последующих термических обработках образует оксид алюминия. В таких случаях его содержание в носителе, как правило, составляет не менее 20 мас. %, что не может не оказывать влияния на образование активной фазы при нанесении металла, сопутствующих термических обработках и активации (восстановлении) готового катализатора. Совокупные химические и физические особенности связующего могут влиять на свойства готового катализатора, и их следует учитывать с самого начала разработки формулы катализаторов. Например, в работе [13] показано, что связующее оксид алюминия увеличивает кислотность Льюиса и защищает цеолитную составляющую от деалюминирования во время гидротермальных обработок. А в работе [14] на основании анализа свойств катализатора на основе цеолита Ү, полученного экструзией с псевдобемитом, в сравнении с исходным порошком цеолита и его физической смеси с оксидом алюминия делается вывод об образовании новых активных центров на границе взаимодействия цеолит-связующее.

В общем случае влияние связующего можно подразделить на следующие категории [15]:

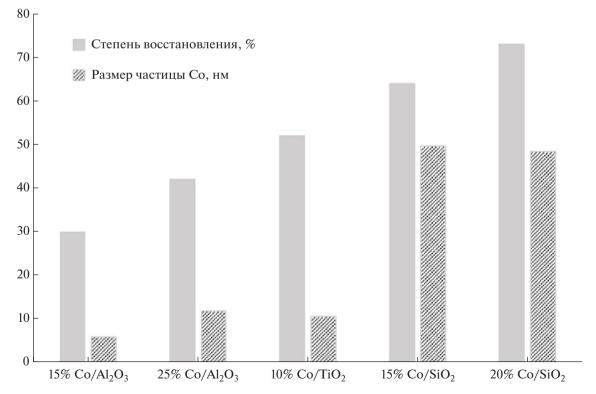
- изменение характеристик коксования катализатора;
 - захват ядов;

Рис. 1. Схематическое изображение взаимосвязи между свойствами катализатора, того, чем они обеспечиваются, и показателями СФТ.

- перенос химических веществ в активную фазу или из нее;
- изменение теплопередачи/тепловых характеристик;
 - изменение пористости;
 - повышение прочности.

В частности, миграция форм алюминия в гидротермальных условиях описана в работе [16], в которой показано, что связующее — моногидрат α-оксида алюминия —значительно ускоряет крекинг н-гексана, олигомеризацию пропилена, депарафинизацию смазочных материалов и конверсию метанола в углеводороды в присутствии катализатора на основе HZSM-5.

Таким образом, физико-химические свойства Al_2O_3 как носителя или связующего — кристаллическая фаза, морфология, кислотно-основные свойства — будут оказывать влияние на структуру частиц Co, а, следовательно, и на активность и селективность катализатора в $C\Phi T$.


В настоящем обзоре сделана попытка систематизировать данные и выявить особенности, с которыми могут столкнуться исследователи, разрабатывающие новые катализаторы СФТ, со-

держащие Al_2O_3 , а также катализаторы на иных носителях, в которых Al_2O_3 присутствует в качестве связующего.

ВЛИЯНИЕ НОСИТЕЛЯ НА СВОЙСТВА Со-КАТАЛИЗАТОРОВ СИНТЕЗА ФИШЕРА—ТРОПША

Сравнение свойств катализаторов на основе наиболее популярных носителей Со-катализаторов СФТ позволит обосновать наш интерес именно к оксиду алюминия.

В первую очередь свойства носителя во многом определяют количество активных центров, образующихся во время обработки в восстановительной среде — восстановления или активации. Однако нельзя пренебречь и влиянием условий восстановления (активации), от которых зависит компромисс между дисперсией кобальта и процентным содержанием восстановленных частиц оксида кобальта. Например, частицы кобальта на поверхности SiO_2 характеризуются большими размерами кластеров, что обеспечивает высокую степень восстановления уже при 350° C, тогда как на поверхности Al_2O_3 образуются кластеры меньшего размера, которые относительно легко

Рис. 2. Зависимость степени восстановления и размера частиц Co от его содержания и типа носителя (диаграммы построены по данным работы [8]).

взаимодействуют с носителем, что препятствует лостижению высокой степени восстановления при этой температуре [8]. Авторы также показали, что степень восстановления прокаленных катализаторов, наблюдаемая после обработки при 350°С в смеси H₂: Ar = 1:2 в течение 10 ч увеличивалась в ряду 15% Co/Al₂O₃ < 25% Co/Al₂O₃ < $< 10\% \text{ Co/TiO}_2 < 15\% \text{ Co/SiO}_2 < 20\% \text{ Co/SiO}_2$, Te есть, на первый взгляд, зависела только от типа носителя и содержания Со. Однако размер частиц Со возрастал практически в такой же последовательности: 15% Co/Al₂O₃ < 25% Co/Al₂O₃, 10% Co/TiO₂ < 15% Co/SiO₂, 20% Co/SiO₂ (рис. 2), что, тем не менее, не отменяет влияние природы носителя и количества Со, поскольку размер частиц кобальта зависит и от первого, и от второго.

В работе [17] методом TPR-XANES/EXAFS, позволяющим исследовать одновременно несколько образцов в одинаковых условиях, были изучены 5 катализаторов (4 на основе Al_2O_3 и 1 на основе SiO_2) и Co_3O_4 как образец сравнения. Было установлено, что ключевым фактором, определяющим степень взаимодействия и скорость восстановления оксидов кобальта, является тип носителя. Так, на поверхности SiO₂, слабо взаимодействующего с кобальтом, образуются крупные кристаллиты Со, что приводит к невысокой удельной поверхности активного металла при обработке водородом. Поэтому, несмотря на относительно низкую степень восстановления, удельная поверхность металлического кобальта в катализаторе 15% Со/АІ₂О₃ после 10-часовой восстановительной обработки была выше, чем в катализаторе 20% Co/SiO₂.

В работе [18] с помощью физико-химических методов (ТЭМ, сорбция азота и рентгеновская дифракция) была исследована серия промотированных кобальтовых катализаторов СФТ, нанесенных на Al_2O_3 , SiO_2 и TiO_2 . Показано, что объем и структура пор носителя существенно влияют на размер и форму частиц кобальта. На крупнопористых носителях γ -Al₂O₃ и TiO₂ (объем пор 38-43 нм) Со₃О₄ находился в виде частиц со средним размером 33 и 22 нм соответственно, а на поверхности мелкопористого SiO₂ (объем пор 6.8 нм) образовывал частицы среднего размера 17 нм. Катализатор на основе Al_2O_3 был наименее активным в СФТ, что авторы объяснили более сильным взаимодействием металлноситель.

Авторы [19] на основании результатов тестирования кобальтовых катализаторов на основе γ -Al₂O₃, α -Al₂O₃ и TiO₂ в CФТ (2 МПа, 210°C,

8 ч) сделали вывод, что селективность образования углеводородов C_{5+} в значительной степени зависит не только от активности Со-центра, но и от морфологии и размера кристаллитов Со, в конечном счете — от материала носителя. Несмотря на то, что общей связи между размером частиц Со и селективностью катализатора не обнаружено, наблюдались корреляции между этими характеристиками, индивидуальные для каждого материала носителя, наименее представительные выраженные для γ -Al₂O₃.

В работе [20] сравнивали показатели СФТ $(2 M\Pi a, 210^{\circ}C, H_{2}/CO = 2)$, полученные в присутствии пропиточных катализаторов на основе TiO_2 , SiO_2 и Al_2O_3 , содержащих 15% Co, в зависимости от степени взаимодействия между активной фазой и носителем в условиях восстановительной обработки. Так, катализатор на основе SiO₂ характеризовался наиболее мелкими кристаллитами Со благодаря низкой степени взаимодействия Со-носитель и большой площади поверхности. Более крупные частицы Со формировались при его нанесении на оксид титана, что авторы объяснили малой поверхностью этого носителя, которая способствовала агломерации Со₃О₄. Самые крупные кристаллиты Со образовывались на поверхности оксида алюминия, что авторы связали с сильным взаимодействием Со-Аl₂O₃. Однако такое объяснение противоречит результатам других работ (например, [8, 17]), в которых убедительно показано, что сильное взаимодействие Со-носитель благоприятствует образованию более мелких кристаллитов активного металла, препятствуя их агрегации.

Авторы [21] изучали изменение степени восстановления Со в катализаторах на основе SiO_2 и Al_2O_3 в течение 16 ч с помощью рентгеновской дифракции и магнитных измерений. Согласно результатам экспериментов, Со, нанесенный на SiO_2 , достигает максимальной степени восстановления (около 100%) в водороде при 500°C через 6 ч после начала восстановления, а Со, нанесенный на Al_2O_3 , восстанавливается до максимальных 80% через 10 ч. Авторы предполагают, что это отличие связано с образованием трудновосстанавливаемого алюмината Со.

В работе [22] изучали влияние различных носителей (γ -Al₂O₃, SiO₂ и TiO₂) на форму, внешний вид и размер частиц кобальта и его восстанавливаемость с применением различных методов, в том числе рентгеновской дифракции, хемосорбции H_2 , температурно-программируемого восстановления и титрования O_2 . Было показано, что раз-

мер частиц Со₃О₄ и Со⁰ и восстанавливаемость возрастали с увеличением среднего диаметра пор носителя. Co_3O_4 на поверхности как γ - Al_2O_3 , так и SiO₂ представлял собой кластеры, причем более крупные образовывались на поверхности силикагеля, который характеризовался большим средним диаметром пор. При этом на поверхности ТіО2, несмотря на крупные поры, формировались монокристаллы Со₃О₄. Авторы полагают, что размер агломератов Со₃О₄ увеличивается с ростом диаметра пор до определенного размера, за пределами которого агломерация не происходит. Также авторы установили, что степень восстановления по данным ТПВ и титрования О2 возрастает в ряду $Al_2O_3 \le SiO_2 \le TiO_2$. Восстанавливаемость зависит от степени взаимодействия металл—носитель. Однако в работе [8] было показано, что степень взаимодействия металл-носитель снижается в ряду γ -Al₂O₃ > TiO₂ > SiO₂. Авторы [22] объясняют такое несовпадение тем, что для TiO2 она сильно зависит от фазы TiO₂. Так, известно, что для рутила взаимодействие металл-носитель слабее, чем для анатаза, а в работе [22] методом рентгеноструктурного анализа установлено, что используемый TiO₂ представляет собой в основном рутил, что и объясняет несоответствие данных [8] и [22].

Таким образом, очевидно, что носитель играет важную роль для обеспечения необходимых свойств кобальтовых катализаторов СФТ. От него зависит степень восстановления Со, его электронное состояние, размер и распределение его частиц по поверхности носителя, что и определяет качество и количество активных центров. Низкую по сравнению с SiO_2 и TiO_2 активность в СФТ катализаторов на основе Al₂O₃ большинство исследователей объясняют сильным взаимодействием металл-носитель, приводящим к образованию трудновосстанавливаемых соединений, снижающих степень восстановления. Однако также отмечается, что удельная площадь поверхности металлического кобальта в катализаторе 15% Со/Аl₂O₃ может быть выше, чем в катализаторе 20% Co/SiO₂, несмотря на меньшее его содержание. Кроме того, в [19] не обнаружили явной корреляции между размером частиц Со и селективностью катализатора именно в случае использования γ -Al₂O₃.

АКТИВНЫЕ ЦЕНТРЫ Со-КАТАЛИЗАТОРОВ СФТ

Активная фаза катализаторов СФТ для выполнения своей роли должна содержать металл в 0-валентном состоянии [2, 4, 6, 23]. Металлический Со может существовать в двух кристаллографических фазах: гексагональной плотноупакованной (гпу) и кубической гранецентрированной (гцк). Превращение первой фазы во вторую происходит при 400°C (в случае массивного Со наличие носителя может оказывать влияние на этот процесс) [24]. Если размер частиц Со очень мал, этот переход может осуществляться в более мягких условиях. В работе [25] показано, что фаза гцк предпочтительна. если размер частиц Со менее 20 нм, а гпу — если размер частиц более 40 нм. В пределах этих размеров соотношение фаз Со зависит от ряда причин, в частности (в случае СФТ) от свойств носителя, способа приготовления катализатора, предварительных термических обработок (включая условия активации/восстановления), наличия промоторов [5, 26].

Несмотря на большое количество исследований, остается открытым вопрос, какая фаза Со более активна в СФТ. Многие авторы сообщают, что фаза Со-гпу проявляет большую активность в СФТ [5, 9, 21, 27–32]. В ряде работ такое предпочтение объясняют результатами расчета энергии активации СО [27, 31], которая в случае Согпу заметно ниже (101 кДж/моль), чем в случае Со-гцк (144 кДж/моль). При этом отмечается, что на Со-гпу предпочтительна прямая диссоциация СО, а в случае Со-гцк необходимо промотирующее участие водорода. Исследователи, поддерживающие версию о более высокой активности Согпу, связали увеличение доли фазы Со-гпу при активации по схеме H_2 -CO или $(H_2 + CO)$ - H_2 и активность в СФТ [5, 21, 32 и др.]. Некоторые из них предполагают, что преобразование Со-гцк в Со-гпу происходит через образование Со₂С (например, [5]).

Поскольку в гетерогенных катализаторах кобальт присутствует в наноструктурированной форме (размер кристаллитов менее 20 нм предпочтителен для успешного протекания СФТ [2, 4]), то, как показано в [25], фаза Со-гцк наиболее выгодна термодинамически. Однако для массивного кобальта общепринято считать термодинамически устойчивой фазу Со-гпу. Это дает основание другой части исследователей утверждать, что именно фаза Со-гцк является источником активных центров в нанесенных кобальтовых катализаторах СФТ [21, 33]. В работе [34] с помощью просвечивающей электронной микроскопии исследовали восстановление частиц Co_3O_4 и CoO *in situ*. Авторы показали, что мелкие частицы обоих оксидов легко восстанавливаются водородом до Co^0 , тогда как крупные частицы Co_3O_4 сначала восстанавливаются до CoO, затем агломерируются и только потом восстанавливаются до металлического Co. Предполагается, что CoO при восстановлении образует Co-гцк благодаря сходному расположению атомов кобальта в этих фазах. Это приводит к мысли о том, что вероятность образования Co-гпу при восстановлении водородом низка.

Действительно, в работе [35] с использованием рентгеновской дифракции *in situ* показано, что катализатор 25% Co-0.1% Pt/Al₂O₃, полученный пропиткой водным раствором нитрата Co, после восстановления в чистом водороде содержал 80% металлического Co со структурой гцк и 20% — со структурой гпу.

Авторы [36] с помощью рентгеновской дифракции исследовали восстановление монофазных и нанесенных оксидов кобальта. Было установлено, что монофазный оксид Co_3O_4 в чистом водороде восстанавливается до Co-гпу, а восстановление нанесенного Co_3O_4 протекает через образование CoO до Co-гцк. Авторы также отмечают, что при восстановлении нанесенного оксида кобальта формирование фазы Co-гцк происходит уже при $260^{\circ}C$, хотя стабильным при этой температуре считается фаза Co-гпу [24].

Авторы [33] применили теорию активных ансамблей Кобозева к частицам Со со структурой гцк, поскольку она является более стабильной для кристаллитов Со размером менее 20 нм, необходимых для успешного протекания СФТ. Эта теория утверждает, что реакционная способность зависит от наличия определенных комплексов поверхностных атомов — активных центров [37]. На основании проведенных расчетов авторы делают вывод, что поскольку количество активных центров — ступенек, изломов и других дефектов кристаллов — на поверхности частиц Со-гцк зависит от их размера, то активность СФТ будет падать при уменьшении размера частиц Со ниже 8 нм. Это подтверждается многочисленными экспериментальными данными (например, [4, 8, 24]).

В работе [38] подчеркивается важная роль нарушений поверхностной структуры граней кобальта (например, ступеней или иных сбоев в укладке), поскольку именно такие дефекты эффективно катализируют диссоциативную адсорбцию H_2 , причем образовавшиеся поверхностные атомы водорода слабо связаны с такими центрами. По мнению авторов, частицы кобаль-

та имеют объемную гцк-структуру. На поверхности такой частицы преобладают грани (111) и (100), оканчивающиеся ступенчатыми участками, которые являются основным источником атомов водорода во время СФТ. Атомарный водород быстро диффундирует на соседнюю террасу, где он может вступить в одну из реакций, необходимых для превращения СО в длинноцепочечные углеводороды. Авторы [39] также считают способность частиц Со к диссоциативной адсорбции водорода параметром, определяющим их активность в СФТ.

Авторы [40] рассчитали, что на плоской поверхности грани кристаллической решетки Со-гцк термодинамически выгодно образование метана, тогда как наличие ступенчатых участков на грани (111) способствует образованию связи С-С. Это предположение подтверждается авторами [41], расчеты которых показали, что на плоской грани Со(0001) возможен синтез только спиртов и метана, тогда как основными продуктами СФТ в присутствии Со катализаторов являются длинноцепочечные углеводороды. В работе [42] экспериментально исследовали СФТ на отдельных гранях единичного кристалла Со (размером 8 мм), предварительно очищенного плазменным травлением при контролируемом нагреве не выше 350°C. Затем монокристалл помещали в атмосферу смеси Н2 и СО с соотношением 2: 1. Состав продуктов определяли хроматографически. Согласно данным [42], углеводороды с числом атомов С более 3-х были получены только на грани Со(1120), причем вероятность роста цепи составляла всего 0.36.

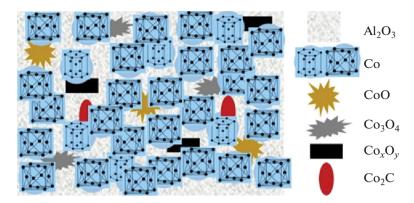
Во всех вышеупомянутых работах изучали катализаторы в порошкообразном виде, в то время как в промышленности для синтеза Фишера-Тропша используют гранулированные кобальтовые катализаторы, причем для реакторов со стационарным слоем размер гранул составляет 1.5 мм и более. Поэтому для получения информации о характеристиках промышленного катализатора его необходимо не только исследовать в условиях синтеза, но и использовать реальные форму и размеры гранул. Одна из немногочисленных работ в этом направлении посвящена динамической визуализации с помощью компьютерной томографии гранул катализатора Co/γ - Al_2O_3 размером 3 мм в условиях активации и синтеза [2]. Авторы наблюдали необычное распределение Со в виде Со₃О₄ в свежеприготовленной грануле: его концентрация была выше на внешней поверхности гранулы, что отнесли

к нюансам приготовления (методом пропитки с последующим прокаливанием). В процессе восстановления в токе водорода происходило образование СоО, который затем, начиная с 310°C, превращался в Со-гкц. Интересно отметить, что металлический Со присутствовал как на периферии гранулы катализатора, так и в ядре, но в обоих случаях его количество составляло около 60% от общего содержания Со. Авторы делают вывод, что восстановление не вызывает заметного спекания частиц Со, а невосстановившейся СоО представляет собой хорошо диспергированные частицы размером менее 6.5 нм, которые "прилипают" к Al_2O_3 , что затрудняет его восстановление. При подаче смеси СО и Н2 (в соотношении 1 : 2) наблюдалось резкое снижение количества металлического Со почти исключительно на внешней поверхности, в то время как внутренняя часть гранулы оставалась практически незатронутой. Авторы предполагают, что Со-гкц на внешней поверхности окисляется по периферии образца с образованием в основном СоО и небольшого количества Co_3O_4 водой синтеза, особенно влияющей на внешнюю поверхность гранулы.

Очевидно, что металлическая фаза реальных нанесенных катализаторов не представляет собой смесь однофазных частиц, а является структурой, содержащей большое количество дефектов кристаллических решеток металлического Со [43]. Хотя некоторые катализаторы достаточно хорошо восстанавливаются, непосредственное заключение о кристаллографической ориентации Со сделать невозможно из-за присутствия невосстановленного Со и смешанных соединений. Кроме того, можно предположить возникновение новых структур из-за смещения кристаллографической плоскости [21].

Некоторые авторы в качестве активной фазы выделяют карбид кобальта Co₂C. Однако, что наиболее вероятно, он формируется во время обработки газом, содержащим CO, а не при восстановлении в токе водорода. В большинстве работ делается вывод, что карбид Co активен в образовании кислородсодержащих соединений и/или легких олефинов, которые не являются основными и/или желательными продуктами СФТ в присутствии Co-катализаторов, направленного на получение длинноцепочечных углеводородов [23, 44–46].

Многие исследователи отмечают, что активная поверхность Со-катализаторов СФТ не ограничивается металлической фазой. Так, ав-


торы [46, 47] доказывают, что активность CoO в нанесенных Co-катализаторах в СФТ сравнима с активностью Co^0 , в частности, энергия диссоциации CO на CoO(200) сопоставима с полученной для гцк Co(111).

Авторы [36] с помощью рентгеновской дифракции *in situ* установили, что процесс восстановления в одинаковых условиях (в токе чистого водорода) нанесенного и модельного Co_3O_4 протекает через различные стадии и приводит к разным продуктам: в первом случае — через образование Co_0 протекает в одну стадию. Это наблюдение объясняется влиянием носителя. Кроме того, для восстановленного нанесенного Co_3O_4 обнаружено, что не весь кобальт переходит в Co_0 , часть его остается в виде Co_0 и соединений Co_0 с носителем.

Наиболее полный анализ активных и неактивных фаз в кобальтовых катализаторах СФТ приведен в обзоре [23]. Авторы подчеркивают сложность этой каталитической системы, поскольку в условиях СФТ сосуществуют несколько фаз, что затрудняет выявление какой-либо конкретной, например, характеризующейся повышенной производительностью. Большинство исследователей полагают, что активной фазой СФТ является металлический кобальт. Однако оксиды и карбиды кобальта, а также граница раздела кобальт—носитель также отмечены как активные фазы.

Еще в 1989 г. в работе [48] было показано, что реакция гидрирования СО в метан на поверхности катализатора Co/Al_2O_3 протекает по двум механизмам, которым соответствуют различные активные центры — металлический Со (центр A), или активный центр на границе радела $Co-Al_2O_3$ (центр B). А в работе [49] особое внимание было уделено роли поверхностных соединений Со с носителем.

Стоит также отметить работу [50], в которой указана особая роль фазы CoO, а также предложен новый механизм, названный "механизм диссоциации CO на CoO—Co с помощью Н", который объясняет высокую активность и селективность катализатора CoO—Co/SiO₂ в образовании линейных парафинов. Было обнаружено, что на поверхности восстановленного при 430°C катализатора Со-гкц является доминирующей фазой, содержащей Co, а менее 15% Co присутствует в виде фазы гпу, причем катализатор, восстановленный в водороде при 250°C, содержит в основном CoO,

Рис. 3. Модель поверхности катализатора Co/Al_2O_3 (представление не претендует на соответствие фактическим распределению и масштабу).

а не Co^0 . Именно этот образец был наиболее активен в реакции CO и H_2 , что позволило автором сделать вывод об активности CoO в реакциях метанирования и образования CO_2 .

Таким образом, Со-катализаторы СФТ, в том числе содержащие Al_2O_3 , представляют собой сложные системы (рис. 3), содержащие как минимум Со и оксидный носитель. Кроме того, в их состав могут входить еще и несколько промоторов. Эти компоненты могут взаимодействовать между собой в процессе приготовления катализатора и его восстановления, оказывая влияние на дисперсность и размер кристаллитов активного металла, степень его взаимодействия с носителем, структуру продуктов этого взаимодействия, модифицируя электронные свойства активной фазы. Все это влияет на поведение катализатора в СФТ, его активность, селективность и производительность.

ИССЛЕДОВАНИЕ КАТАЛИЗАТОРОВ Со/ AL_2O_3 МЕТОДОМ ТЕМПЕРАТУРНО-ПРОГРАММИРУЕМОГО ВОССТАНОВЛЕНИЯ

Температурно-программируемое восстановление (ТПВ) широко используется для характеристики Со-катализаторов СФТ. Как правило, восстановление проводят водородом или его смесью с инертным компонентом. Однако возможно применение газов другого состава. Метод предусматривает непрерывное измерение концентрации водорода в отходящем после восстановления газе. Поскольку скорость подачи газа постоянна, изменение содержания H_2 при определенной температуре будет пропорционально скорости восстановления. Таким образом получают уникальный профиль ТПВ, соответству-

ющий кинетике восстановления, а максимум в таком профиле соответствует наибольшей скорости восстановления. Метод ТПВ позволяет выявить отличия одной каталитической системы на основе Со от другой и оценить вклад составляющих активной фазы в каталитические характеристики.

В работе [51] при изучении восстановления Со₃О₄, нанесенного на Со-фольгу, было установлено, что кривая ТПВ характеризуется двумя пиками: низкотемпературным ниже 300°C и высокотемпературным между 300 и 700°C, что согласуются со ступенчатым восстановлением Co_3O_4 → CoO → Co, описанном в [17, 51–52]. В профиле ТПВ катализаторов Со/Аl₂O₃, содержащих 15-25 мас. % Со и прокаленных при низкой температуре, обычно наблюдаются острый пик с максимумом при температуре около 350°C и очень широкий пик, простираюшийся до 800°C. Кроме того, на профилях ТПВ часто присутствует очень небольшой пик выше 800°С, отнесенный к восстановлению алюмината кобальта. Отношение площади второго пика к площади первого обычно близко к 3:1. Это позволило сделать предположение, что двухстадийное восстановление происходит через образование СоО в качестве промежуточного оксида, как было получено ранее для Co/SiO₂ [53]. Такая интерпретация означает, что второй этап восстановления сильно зависит от типа носителя, пористости и размера кристаллитов Со.

В работах [36, 54] наблюдали третий пик в диапазоне 530—900°С, который был отнесен к трудновосстанавливаемым соединениям Со с носителем. Влияние таких соединений досконально не изучено, однако существует гипотеза, что $CoAl_2O_4$ играет важную роль в восстанов-

лении Co_3O_4 [55]. В работе [56] предположили, что Co^{3+} в Co_3O_4 может постепенно замещаться Al^{3+} с образованием $CoAl_2O_4$, а авторы [57] обнаружили, что Co/Al_2O_3 , несмотря на меньшую степень восстановления, восстанавливается в гораздо более широком интервале температур, чем Co/SiO_2 , и сделали вывод, что это происходит из-за взаимодействия носителя с оксидами кобальта.

Авторы [36] с помощью дифференцирующего растворения Со/у-АІ₂О₃ после восстановления в чистом водороде установили, что труднорастворимая фаза Co_3O_4 в нем отсутствует, зато есть легкорастворимая, содержащая 86% Со, которая представляет собой СоО. Кроме того, были обнаружены фазы с соотношением Co : Al = 2 и с переменным отношением 0.005-0.02. Первая была отнесена к $CoAl_2O_4$, а вторая — к твердому раствору Со в Al_2O_3 . В вышеуказанной работе в профиле ТПВ Со/у-Аl₂O₃ также присутствовали три пика, причем первый пик отнесен к восстановлению Со₃О₄ до СоО, а второй и третий к восстановлению СоО, который присутствует в двух состояниях, одно из которых труднее восстанавливается до Со0 из-за взаимодействия с носителем.

Похожая интерпретация профилей ТПВ для катализатора 10% Co/Al₂O₃, прокаленного при 300° C, предложена в [58]. Согласно результатам этой работы, острый пик при \sim 320°C обусловлен восстановлением "оксидной поверхностной фазы кобальта, которая не стабилизируется за счет взаимодействия с носителем и, следовательно, легко восстанавливается". Широкий высокотемпературный пик в диапазоне $380-730^{\circ}$ C отнесен к смешанному оксиду, обозначенному авторами как xCoO $\cdot y$ Al₂O₃. Кроме того, в данном исследовании была получена более высокая степень восстановления катализатора 10% Co/SiO₂ (\sim 60%) по сравнению с катализатором 10% Co/Al₂O₃ (\sim 50%).

В работе [55] предложен пятиступенчатый механизм восстановления, который учитывает восстановление и аморфного, и кристаллического Co_3O_4 и взаимодействие CoO, образующегося как промежуточное соединение, с носителем Al_2O_3 . Показано, что высокая степень кристалличности существенно увеличивает трудность восстановления Co_3O_4 . Авторы предложили механизм формирования фазы $CoAl_2O_4$ во время восстановления CoO до Co^0 . Образование Co-Al-шпинели во время активации Co-катализатора наблюдали также в [56], предпола-

гая, как и в работе [57], что Co^{3+} в Co_3O_4 может постепенно замещаться Al^{3+} . Хотя последствия присутствия $CoAl_2O_4$ досконально не изучены, некоторые исследователи склоняются к тому, что он играет важную роль в процессе восстановления Co_3O_4 [55].

Таким образом, хотя изучение Со₃О₄, нанесенного на оксид алюминия, методом ТПВ было проведено во многих работах, в литературе существуют разные интерпретации почти идентичных профилей ТПВ. Это может быть связано с различиями в количестве и источниках кобальта, способах приготовления, в том числе с разными условиями температурных обработок, и, конечно, условиями восстановления (активации), такими как температура, восстановитель, скорость и длительность подачи газа-восстановителя. Некоторые особенности, наблюдаемые во время восстановления таких катализаторов, чаще всего объясняют сильным взаимодействием между частицами оксида кобальта с оксидом алюминия. Как правило, оно приводит к образованию двойного соединения, гомогенного или неоднородного твердого раствора, структуры ядро-оболочка и т.д. Все эти случаи принято относить к сильному взаимодействию.

Особенности, наблюдаемые при ТПВ катализаторов Co/Al_2O_3 , могут позволить обосновать отличия в показателях СФТ, полученных в их присутствии.

ВЛИЯНИЕ СВОЙСТВ AL_2O_3 НА ПОКАЗАТЕЛИ СФТ

В работе [59] было исследовано 13 катализаторов, полученных пропиткой водными растворами носителей у-Аl₂O₃ с различной пористостостью и количеством примеси натрия (20–113 ррт) и содержащих 20 мас. % Со и 0.5 мас. % Re. Разные размеры пор носителя (6-27 нм) позволили авторам варьировать размер частиц Со от 10 до 15 нм (по данным хемосорбции водорода): мелкие частицы образовывались в узких порах, а крупные частицы — в широких. Катализаторы тестировали в виде порошка (53-90 мкм), разбавленного карбидом кремния, в реакторе с неподвижным слоем катализатора. Перед синтезом образцы восстанавливали водородом при 0.1 МПа и 350°C в течение 16 ч. СФТ проводили при 2 МПа и 210°C из синтез-газа с соотношением H_2 : CO = 2.1 в течение 26 или 104 ч. Скорость синтез-газа варьировали, чтобы обеспечить 50%-ную конверсию СО. Показано, что

степень восстановления Со возрастала с 55-60 до 70-71% с увеличением размера пор носителя с 6 до 27 нм и размера частиц Со с 10 до 15 нм. Обнаружена корреляция между селективностью образования углеводородов С₅₊ и размером частиц кобальта: чем крупнее последние, тем выше селективность, которая достигала 84% при диаметре частиц Со 15 нм. Увеличение доли примеси Na в носителе приводило к снижению активности катализатора. Полученные результаты были уточнены в работе [60], в которой изучали корреляцию между селективностью образования метана, олефинов и углеводородов С₅₊ и размером частиц Со в диапазоне 2-14 нм, нанесенных на δ - и θ -Al₂O₃. Показано, что селективность образования углеводородов С5+ повышалась с ростом размера частиц Со до 8-9 нм, достигая максимальных 84-86%, а затем снижалась до 82-83%, которые, вероятно, уже не зависели от фазы оксида алюминия и размера пор. В работе [61] также было показано, что каталитические свойства Со-катализаторов СФТ существенно зависят от размера частиц активного компонента в диапазоне < 9 нм. Интересно отметить, что в [62] наблюдали меньшую склонность к спеканию крупных частиц Со (>20 нм), нанесенных на Al_2O_3 , во время СФТ в сларри-реакторе по сравнению с мелкими. Причем чем крупнее частицы Со, тем меньше потери в активности катализатора за первые 200 ч работы в СФТ: для образцов с размером частиц Со 5 нм они составляли 80%, а 19 нм — 25%.

В работе [63] было исследовано 18 разновидностей Al₂O₃, отличающихся пористой структурой и кристаллической фазой, полученных из гиббсита и бемита при прокаливании в разных условиях. Интересно, что симбатное увеличение размера пор и кристаллитов Со, наблюдаемое в [59], соблюдалась только при использовании бемита в качестве источника Al₂O₃. В этом случае степень восстановления Со (H₂, 400°C, 6 ч) довольно равномерно возрастала с 54 до 64% при повышении температуры прокаливания бемита с 600 до 1050°C, при этом удельная площадь поверхности носителя снижалась, а Со — увеличивалась (с 0.4 до $1 \text{ m}^2/\text{г}$). Такой же характер зависимости отмечался и для активности катализаторов на основе бемита в СФТ (1 МПа, 230°C, H_2 : CO = 2, сларри-реактор): конверсия CO росла с 22-27% при прокаливании бемита при 600-800°C до 54-61% при прокаливании бемита при 1000-1050°C, а селективность образования углеводородов $C_{5+}-c$ 78-84 до 89% соответственно. При этом степень восстановления Со не зависела от температуры прокаливания гиббсита в диапазоне $600-900^{\circ}$ С, составляя $\sim 60\%$, и увеличивалась до 97% при прокаливании гиббсита при 1000° С. Наибольшая удельная поверхность Со ($\sim 1 \text{ м}^2/\text{г}$) наблюдалась при прокаливании исходного гиббсита при $800-900^{\circ}$ С, а наибольшая конверсия СО ($\sim 40\%$) — при $850-900^{\circ}$ С. То есть высокая степень восстановления (97%) не способствовала высокой активности катализаторов Со/ Al_2O_3 . Авторы сделали вывод, что основными характеристиками катализатора, от которых зависят его свойства в СФТ, являются размер пор носителя и удельная площадь поверхности Со.

В работе [64] также изучали влияние размера частиц кобальта на показатели СФТ с использованием специально синтезированных частиц оксида кобальта размером 4.8-17.5 нм (кислородное титрование и поглощение водорода). Предварительно полученные частицы Со наносили на у- Al_2O_3 (5 мас. %). Показано, что степень восстановления Со возрастала с 34 до 59% при увеличении размера его частиц от 4.8 до 17.5 нм, однако количество поглощенного Н2 при этом уменьшалось. Катализатор с размером частиц кобальта 9.3 нм был самым активным и одним из наиболее селективных в СФТ: конверсия СО в его присутствии составляла 27.7%, а селективность образования углеводородов C_{5+} — 74.7%. Кроме того, скорость деактивации катализаторов снижалась с увеличением размера частиц Со, как и по данным работы [62].

Таким образом, оксид алюминия выполняет первую из обязательных функций носителя определяет распределение активного металла, его дисперсность и размер частиц. Очевидно, что немаловажная роль в этом принадлежит взаимодействию металл-носитель, которое зависит от химической активности поверхности носителя. В работе [65] было установлено, что в зависимости от реакционной способности Al₂O₃ структура поверхности и химический состав 10%-ных Со-катализаторов существенно изменяются: при слабом взаимодействии металла с носителем преобладающей поверхностной фазой была Со₃О₄, а с увеличением реакционной активности носителя на поверхности катализатора обнаруживались СоО и СоАІ2О4. Реакционную способность носителей оценивали по количеству групп =Al-OH на их поверхности: чем их больше, тем сильнее степень взаимодействия Со с носителем и ниже восстанавливаемость активного металла.

Авторы [66] полагают, что низкая концентрация поверхностных гидроксильных групп

способствует более высокой дисперсии Со на катализаторе, содержащем Al₂O₃, поскольку ОН-группы могут выступать в качестве мест образования Co-Al-шпинели [67]. Количество ОН-групп определяли с помощью термографического анализа по потере массы в диапазоне 130-1100°С. С авторами работы [67] согласны авторы работы [68], которые перед нанесением 12% кобальта подвергали оксид алюминия обработке при 270°C в присутствии 10%-ного раствора аммиака, нитрата аммония, уксусной кислоты или этанола. Наибольшее влияние на пористую систему Al₂O₃ оказала обработка аммиаком: она привела к снижению удельной поверхности со 167 до 28 м 2 /г и объема пор с 0.81 до 0.12 см 3 /г, однако при этом возросла доля пор с размером более 50 нм. Обработка нитратом аммония способствовала росту доли мелких пор (<10 нм), а уксусной кислотой — небольшому увеличению количества и мелких, и крупных пор. Рентгенофазовый анализ показал, что и щелочная, и кислотная обработки приводили к образованию у-AlOOH, причем в случае водного раствора аммиака полностью исчезала фаза γ-Al₂O₃. Степень восстановления Со, определенная методами ТПВ и кислородного титрования, понижалась с 33.1 до 12.5% при обработке носителя уксусной кислотой и повышалась до 51.6 и 44.2% при обработке нитратом аммония и аммиаком соответственно. Авторы делают вывод, что в первом случае степень взаимодействия Со с носителем увеличилась, а в двух других — снизилась. Размер кристаллитов Со₃О₄, определенный из уравнения Шеррера, и дисперсность частиц Со, рассчитанная по данным поглощения водорода и хемосорбции кислорода, изменялись не столь значительно: наименьшие кристаллиты (11 нм) с наибольшей дисперсностью (14.9%) наблюдались на поверхности носителя, обработанного кислотой, тогда как соединения аммиака практически не повлияли на размер кристаллитов (14-15 нм против 14 нм в случае необработанного Al₂O₃), однако способствовали снижению дисперсности (с 12.5 до 10.5–10.7%). Наименее активным в СФТ был катализатор, носитель которого был обработан кислотой, — конверсия СО в его присутствии составила 12.6%, причем в этом случае наблюдался наибольшая селективность образования метана (34.3%), CO₂ (15.3%) и кислородсодержащих соединений (29%). Наибольшей активностью характеризовались катализаторы на основе Al₂O₃, обработанного нитратом аммония и аммиаком, — конверсия СО в их присутствии составила 61-62%. Кроме того,

в последнем случае селективность образования углеводородов C_{5+} была наибольшей (68%), а метана — наименьшей (19%). Авторы объяснили полученные результаты высокой степенью восстановления Со (44—52%), нанесенного на обработанные нитратом аммония и аммиаком носители, и большим количеством СО, адсорбированного в мостиковой форме, на их поверхности, поскольку именно она способствует активному протеканию СФТ.

Таким образом, несмотря на отличия в критериях определения активности и подходах к ее измерению в работах [59-66], можно сделать вывод, что химическая активность поверхности оксида алюминия, используемого в качестве носителя или связующего, является основным его свойством, определяющим каталитическое поведение Со-катализаторов в СФТ. Химическая активность определяется свойствами соединения-предшественника оксида алюминия [63] и может регулироваться с помощью, например, щелочной обработки [66]. От нее зависит, в конечном счете, размер частиц Со, а следовательно, и каталитические показатели: чем частицы Со крупнее, тем выше селективность образования углеводородов С₅₊ [59] и срок жизни катализатора [62, 64]. Сравнительный анализ полученных в этих работах данных позволяет определить оптимальный размер частиц Со (8-9 нм), превышение которого нежелательно с точки зрения активности и селективности катализатора в СФТ.

Следует также отметить, что Al_2O_3 нельзя назвать полностью инертным в условиях СФТ: кроме взаимодействия с Со и его оксидами он может адсорбировать СО [69-71], а в ряде публикаций отмечается его активность в реакции водяного газа (например, в [72]). Следует еще раз подчеркнуть, что поверхностный состав каталитической системы Со/Аl₂O₃ сложен и лишь в редких случаях включает только Со⁰ в качестве активного центра [5, 48-50] (рис. 3). Однако, несмотря на очевидность того, что каталитическая активность Со сильно зависит от свойств Al₂O₃, однозначное понимание их взаимосвязи еще не достигнуто, и это может препятствовать извлечению наиболее полной выгоды для создания новых каталитических систем на основе Со и Al_2O_3 .

ЗАКЛЮЧЕНИЕ

Таким образом, анализ литературных данных позволил выявить некоторые особенности физико-химических свойств Al_2O_3 , знание кото-

рых может быть полезным при разработке новых катализаторов СФТ. В обзоре продемонстрированы возможности для улучшения каталитических характеристик за счет оптимизации формы и размера частиц и степени восстановления Со при использовании в качестве носителя или его компонента Al_2O_3 . Из вышеизложенного можно выделить несколько особых свойств оксида алюминия, которые необходимо учитывать при создании новых катализаторов СФТ:

- сильное взаимодействие металл—носитель, способствующее не только диспергированию Со на поверхности носителя, но и дающее возможность управлять размером частиц активного металла, а, следовательно, и количеством активных центров, в том числе и за счет простой химической обработки исходного оксида алюминия; при этом Al_2O_3 обеспечивает высокую удельную поверхность восстановленного кобальта при относительно низком его содержании;
- Al_2O_3 может быть получен в различных кристаллических модификациях γ - Al_2O_3 , θ - Al_2O_3 , α - Al_2O_3 и η - Al_2O_3 , что также может позволить управлять количеством и качеством активных центров;
- управление типом кристаллической решетки кобальта (гцк или гпу) с учетом роли нарушений поверхностной укладки на гранях является важным фактором контроля активности и селективности;
- восстановление катализаторов $\text{Co/Al}_2\text{O}_3$ в токе водорода не вызывает заметного спекания частиц Co.

В ряде работ утверждается, что негативной особенностью Со-катализаторов на основе Al_2O_3 является образование трудновосстанавливаемых соединений, в частности, алюмината Со, однако бесспорные доказательства их отрицательного влияния на СФТ отсутствуют. Наоборот, одно из популярных направлений в разработке новых катализаторов основано на использовании в качестве добавки, стабилизирующей Al_2O_3 , именно шпинели $CoAl_2O_4$ (например, [73—75]).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

ФИНАНСИРОВАНИЕ

Данная работа финансировалась за счет средств бюджета учреждения. Никаких допол-

нительных грантов на проведение или руководство данным конкретным исследованием получено не было.

СПИСОК ЛИТЕРАТУРЫ

- Cheng K., Kang J., King D.L., Subramanian V., Zhou C., Zhang Q., Wang Y. // Adv. Catal.-2017. V. 60. P. 125. DOI: 10.1016/bs.acat.2017.09.003
- Senecal P., Jacques S.D.M., Michiell M.D., Kimber S.A.J., Vamvakeros A., Odarchenko Y., Lezcano-Gonzalez I., Paterson J., Ferguson E., Beale A.M. // ACS Catal. 2017. V. 7. № 4. P. 2284.
- 3. Tsakoumis N.E., Voronov A., Ronning M., van Beek W., Borg O., Rytter E., Holmen A. // J. Catal. 2012. V. 291. P. 138.
- 4. *Fischer N., Clapham B., Feltes T., Claeys M.* // ACS Catal. 2015. V. 5. № 1. P. 113.
- Sadeqzadeh M., Karaca H., Safonova O.V., Fongarland P., Chambrey S., Roussel P., Griboval-Constant A., Lacroix M., Curulla-Ferré D., Luck F., Khodakov A.Y. // Catal. Today. 2011. V. 164. P. 62.
- 6. Cats K.H., Gonzalez-Jimenez I. D., Liu Y., Nelson J., van Campen D., Meirer F., van der Eerden A.M.J., de Groot F.M.F., Andrews J.C., Weckhuysen B.M. // Chem. Commun. 2013. V. 49. № 41. P. 4622.
- 7. *Shiba N.C., Liu X., Mao H., Qian X., Hildebrandt D., Yao Y.* // Fuel. 2022 V. 320. Art. 123939.
- 8. *Jacobs G., Das T.K., Zhang Y., Li J., Racoillet G., Davis B.H.* // Appl. Catal. A: Gen. 2002. V. 233. P. 263.
- 9. Chen W., Lin T., Dai Y., An Y., Yu F., Zhong L., Li S., Sun Y. // Catal. Today. 2018. V. 311. P. 8.
- 10. Yang N., Bent S. F. // J. Catal. 2017. V. 351. P. 49.
- 11. *Cheng Q., Liu Y., Lyu S., Tian Y., Ma Q., Li X.* // Chin. J. Chem. Eng. 2021. V. 35. P. 220.
- 12. *Munirathinam R., Minh D.P., Nzihou A.* // Ind. Eng. Chem. Res. 2018. V. 57. № 48 P. 16137.
- 13. Nikolopoulos N., Wickramasinghe A., Whiting G.T., Weckhuysen B.M. // Catal. Sci. Technol. 2023. V. 13. № 3. P. 862.
- 14. Lakiss L., Gilson J.-P., Valtchev V., Mintova S., Vicente A., Vimont A., Bedard R., Abdo S., Bricker J. // Micropor. Mesopor. Mater. 2020. V. 299. Art. 110114.
- 15. *Hargreaves J.S.J.*, *Munnoch A.L.* // Catal. Sci. Technol. 2013. V. 3. P. 1165.
- Shihabi D.S., Garwood W.E., Chu P., Miale J. N., Lago R.M., Chu C.T.-W., Chang C. D. // J. Catal. 1985. V. 93. P. 471.
- 17. Jacobs G., Ji Y., Davis B.H., Cronauer D., Kropf A.J., Marshall C.L. // Appl. Catal. A: Gen. 2007. V. 333. P. 177.
- Shiba N.C., Liu X., Yao Y. // Reactions. 2023. V. 4. P. 420.

- 19. Lögdberg S., Yang J., Lualdi M., Walmsley J.C., Järås S., Boutonnet M., Blekkan E.A., Rytter E., Holmen A. // J. Catal. A: Gen. 2017. V. 352. P. 515.
- 20. *Shiba N.C.*, *Liu X.*, *Hildebrandt D.*, *Yao Y.* // Reactions. 2021. V. 2. P. 258.
- Braconnier L., Landrivon E., Clémençon I., Legens C., Diehl F., Schuurman Y. // Catal. Today. 2013. V. 215. P. 18.
- 22. Storsæter S., Tøtdal B., Walmsley J.C., Tanem B.S., Holmen A. // J. Catal. 2005. V. 236. № 1. P. 139.
- 23. *ten Have I.C., Weckhuysen B.M.* // Chem. Catal. 2021. V. 1. № 2. P. 339.
- 24. *Liu J.-X.*, *Wang P.*, *Xu W.*, *Hensen E.J.M.* // Engineering. 2017. V. 3. № 4. P. 467.
- 25. *Kitakami O., Sato H., Shimada Y., Sato F., Tana-ka M.* // Phys. Rev. B. 1997. V. 56. № 21. P. 13849.
- 26. *Fischer N.*, *van Steen E.*, *Claeys M.* // Catal. Today. 2011. V. 171. № 1. P. 174.
- Lyu S., Wang L., Zhang J., Liu C., Sun J., Peng B., Wang Y., Rappé K.G., Zhang Y., Li J., Nie L. // ACS Catal. 2018. V. 8. P. 7787.
- 28. Liu Y., Chen C., Hou B., Jia L., Wang J., Ma Z., Wang Q., Li D. // Mol. Catal. 2023. V. 544. Art. 113184.
- 29. *Gnanamani M.K., Jacobs G., Shafer W.D., Davis B.H.* // Catal. Today. 2013. V. 215. P. 13.
- Du H., Jiang M., Zhu H., Huang C., Zhao Z., Dong W., Lu W., Liu T., Zhang Z.C., Ding Y. // Fuel. 2021. V. 292. Art. 1202443.
- 31. *Liu J.*, *Su H.*, *Sun D.*, *Zhang B.*, *Li W.* // J. Am. Chem. Soc. 2013. V. 135. № 44. P. 16284.
- 32. *Patanou E., Tsakoumis N.E., Myrstad R., Blek-kan E.A.* // Appl. Catal. A: Gen. 2018. V. 549. P. 280.
- 33. *van Helden P., Ciobîcă I.M., Coetzer R.L.J.* // Catal. Today. 2016. V. 261. P. 48.
- 34. *Ma C., Yun Y., Zhang T., Suo H., Yan L., Shen X., Li Y., Yang Y. //* ChemCatChem. 2021. V. 13. P. 4350.
- 35. Karaca H., Safonova O.V., Chambrey S., Fongarland P., Roussel P., Griboval-Constant A., Lacroix M., Khoda-kov A.Y. // J. Catal. 2011. V. 277. № 1. P. 14.
- 36. Булавченко О.А., Черепанова С.В. Малахов В.В., Довлитова Л.С. Ищенко А.В., Цыбуля С.В. // Кинетика и катализ. 2009. Т. 50. № 2. С. 205.
- 37. Кобозев Н. И. // Ж. физ. химии. 1939. Т. 13. С. 1.
- 38. Weststrate C.J., Mahmoodinia M., Farstad M.H., Svenum I.-H., Strømsheim M.D., Niemantsverdriet J.W., Venvik H.J. // Catal. Today. 2020. V. 342. P. 124.
- 39. Tuxen A., Carenco S., Chintapalli M., Chuang C.-H., Escudero C., Pach E., Jiang P., Borondics F., Beberwyck B., Alivisatos A.P., Thornton G., Pong W.-F., Guo J., Perez R., Besenbacher F., Salmeron M. // J. Am. Chem. Soc. 2013. V. 135. № 6. P. 2273.
- 40. *Chen C., Wang Q., Wang G., Hou B., Jia L., Li D. //* J. Phys. Chem. C. 2016. V. 120. № 17. P. 9132.

- Liu S., Li Y.-W., Wang J., Jiao H. // Catal. Sci. Technol. 2016. V. 6. P. 8336.
- 42. *Geerlings J.J.C., Zonnevylle M.C., de Groot C.P.M.* // Surf. Sci. 1991. V. 241. № 3. P. 315.
- Ducreux O., Rebours B., Lynch J., Roy-Auberger M., Bazin D. // Oil Gas Sci. Technol. – Rev. IFP. 2009. V. 64. № 1. P. 49.
- 44. Gnanamani M.K., Jacobs G., Graham U.M., Ribeiro M.C., Noronha F.B., Shafer W.D., Davis B.H. // Catal. Today. 2016. V. 261. P. 40.
- 45. Pei Y.P., Liu J.X., Zhao Y.H., Ding Y.J., Liu T., Dong W. Da, Zhu H.J., Su H.Y., Yan L., Li J.L. // ACS Catal. 2015. V. 5. P. 3620.
- 46. *Qi Z.*, *Chen L.*, *Zhang S.*, *Su J.*, *Somorjai G.A.* // Appl. Catal. A: Gen. 2020. V. 602, P. 117701.
- 47. Fang X., Liu B., Cao K., Yang P., Zhao Q., Jiang F., Xu Y., Chen R., Liu X. // ACS Catal. 2020. V. 10. № 4. P. 2799.
- 48. *Lee W.H.*, *Bartholomew C.H.* // J. Catal. 1989. V. 120. № 1. P. 256.
- 49. Lapidus A., Krylova A., Rathousky J., Zukal A., Jancalkova M. // Appl. Catal. A: Gen. 1992. V. 80. № 1. P. 1.
- 50. Shiba N.C., Yao Y., Forbes R.P., Okoye-Chine C.G., Liu X., Hildebrandt D. // Fuel Proc. Technol. 2021. V. 216. Art. 106781.
- Sexton B.A., Hughes A.E., Turney T.W. // J. Catal. 1986. V. 97. P. 390.
- 52. Cherepanova S.V., Koemets E.G., Gerasimov E.Yu., Simentsova I.I., Bulavchenko O.A. // Materials. 2023. V. 16. P. 6216.
- 53. Khodakov A.Y., Lynch J., Bazin D., Rebours B., Zanier N., Moisson B., Chaumette P. // J. Catal. 1997. V. 168 P. 16.
- Puskas I., Fleisch T.H., Full P.R., Kaduk J.A., Marshall C.L., Meyers B.L. // Appl. Catal. A: Gen. 2006. V. 311. P. 146.
- Li C., Wong L., Tang L., Scarlett N.V.Y., Chiang K., Patel J., Burke N., Sage V. // Appl. Catal. A: Gen. 2017.
 V. 537. P. 1.
- Chu W., Chernavskii P.A., Gengembre L., Pankina G.A., Fongarland P., Khodakov A.Y. // J. Catal. 2007. V. 252. № 2. P. 215.
- 57. Jacobs G., Ma W., Gao P., Todic B., Bhatelia T., Bukur D.B., Davis B.H. // Catal. Today. 2013. V. 214. P. 100.
- 58. Lapidus A., Krylova A., Kazanskii V., Borovkov V., Zaitsev A., Rathousky J., Zukal A., Jancalkova M. // Appl. Catal. A: Gen. 1991. V. 73. № 1. P. 65.
- Borg Ø., Eri S., Blekkan E.A., Storsæter S., Wigum H., Rytter E., Holmen A. // J. Catal. 2007. V. 248. № 1. P. 89.
- Rane S., Borg Ø., Rytter E., Holmen A. // Appl. Catal.
 Gen. 2012. V. 437. P. 10.
- 61. *Хасин А.А., Юрьева Т.М., Пармон В.Н.* // Доклады Академии наук. 1999. Т. 367. № 3. С. 367.

- 62. Clarkson J., Ellis P.R., Humble R., Kelly G.J., McKenna M., West J. // Appl. Catal. A: Gen. 2018. V. 550. P 28
- 63. *Shimura K., Miyazawa T., Hanaoka T., Hirata S. //* J. Mol. Catal. A: Chem. 2014. V. 394. P. 22.
- 64. *Park J.-Y., Lee Y.-J., Karandikar P.R., Jun K.-W., Ha K.-S., Park H.-G.* // Appl. Catal. A: Gen. 2012. V. 411–412. P. 15.
- Ji L., Lin J., Zeng H.C. // J. Phys. Chem. B. 2000.
 V. 104. № 8. P. 1783.
- 66. Rahmati M., Huang B., Mortensen M.K., Keyvan-loo K., Fletcher T.H., Woodfield B.F., Hecker W.C., Argyle M.D. // J. Catal. 2018. V. 359. P. 92.
- 67. *Bolt P.H., Habraken F.H.P.M., Geus J.W.* // J. Solid State Chem. 1998. V. 135. № 1. P. 59.
- 68. *Zhang J., Chen J., Ren J., Sun Y.* // Appl. Catal. A: Gen. 2003 V. 243. № 1. P. 121.

- 69. Paredes-Nunez A., Lorito D., Guilhaume N., Mirodatos C., Schuurman Y., Meunier F.C. // Catal. Today. 2015. V. 242. P. 178.
- 70. *Szanyi J., Kwak J.H.* // Phys. Chem. Chem. Phys. 2014. V. 16. P. 15117.
- 71. *Shopska M.G., Shtereva I.Z., Kolev H.G., Tenchev K.K., Todorova S.Z., Kadinov G.B.* // Croat. Chem. Acta. 2020. V. 93. № 2. P. 121.
- 72. *Weilach C.*, *Spiel C.*, *Föttinger K.*, *Rupprechter G.* // Surf. Sci. 2011. V. 605. № 15–16. P. 1503.
- 73. Liu Y., Jia L., Hou B., Sun D., Li D. // Appl. Catal. A: Gen. 2017. V. 530. P. 30.
- 74. *Wang J., Wang J., Huang X., Chen C., Ma Z., Jia L., Hou B., Li D.* // Int. J. Hydrogen Energy. 2018. V. 43. № 29. P. 13122.
- 75. *Fratalocchi L., Visconti C.G, Lietti L.* // Appl. Catal. A: Gen. 2020. V. 595. Art. 117514.

Alumina in Active Center Formation of Cobalt Catalysts for Fischer—Tropsch Synthesis

L. V. Sineva¹, *, E. Yu. Asalieva¹, and V. Z. Mordkovich¹

aNRC "KURCHATOV INSTITUTE" — TISNCM, Tsentralnaya st., 7a, Moscow, Troistk, 108840 Russia
*e-mail: sinevalv@tisnum.ru

A mini-review is devoted to the role of alumina as a support or a binder in cobalt catalysts for Fischer—Tropsch synthesis, in particular the role in the formation of active centers. Some peculiarities of the physicochemical properties of alumina have been identified, which may be useful in the development of new catalysts. The possibilities for improving catalytic properties by optimizing the shape and size of particles, as well as the degree of reduction of Co when using alumina as a support or a support component are demonstrated. Bibliography: 75 references

Keywords: Fischer—Tropsch synthesis, cobalt catalysts, aluminum oxide, heterogeneous catalysis, active centers

FUNDING

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.