УЛК 544.478

ВЗАИМОСВЯЗЬ АКТИВНОСТИ ОКСИДНЫХ КАТАЛИЗАТОРОВ В РЕАКЦИИ РАЗЛОЖЕНИЯ ОЗОНА И O_3 -КАТАЛИТИЧЕСКОМ ОКИСЛЕНИИ H- C_4 H_{10}

© 2023 г. Д. А. Бокарев^а, И. В. Парамошин^а, С. А. Канаев^а, А. Ю. Стахеев^{а, *}

^aФГБУН Институт органической химии им. Н.Д. Зелинского РАН, Ленинский просп., 47, Москва, 119991 Россия *e-mail: st@ioc.ac.ru

Поступила в редакцию 23.05.2023 г. После доработки 29.05.2023 г. Принята к публикации 29.05.2023 г.

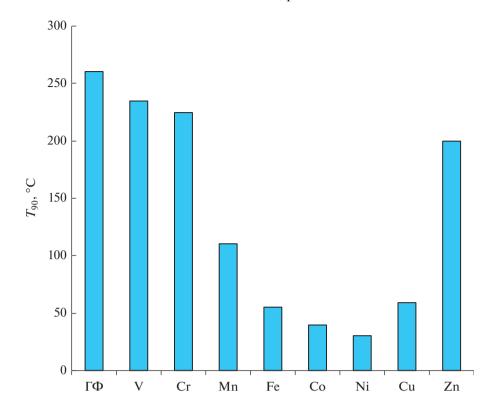
Исследована активность оксидов переходных металлов (V, Cr, Mn, Fe, Co, Ni, Cu, Zn), нанесенных на γ -Al $_2$ O $_3$, в реакции разложения озона. Каталитические характеристики образцов, обладающих высокой (NiO/Al $_2$ O $_3$), низкой (Cr $_2$ O $_3$ /Al $_2$ O $_3$) и промежуточной (MnO $_3$ /Al $_2$ O $_3$) активностью в разложении озона, изучены в процессе озон-каталитического окисления (ОЗКО) μ -бутана. Полученные результаты позволяют сделать вывод о том, что ключевое значение в процессе ОЗКО имеет оптимальная активность оксида переходного металла в разложении О $_3$. При низкой скорости разложения озона, окисление углеводорода ограничено скоростью образования атомарного кислорода, в случае слишком высокой — конверсия углеводорода снижается из-за "нецелевого" процесса рекомбинации атомарного кислорода. Наилучшие каталитические характеристики в окислении μ -C $_4$ H $_1$ 0 установлены для катализатора на основе оксида Мn, обладающего оптимальной активностью в разложении О $_3$.

Ключевые слова: озон-каталитическое окисление (O3KO), оксиды переходных металлов, гетерогенные катализаторы, n-бутан, Al_2O_3

DOI: 10.31857/S0453881123050027, EDN: MUHVDC

ВВЕДЕНИЕ

Важной задачей охраны окружающей среды является очистка отходящих газов промышленных предприятий и автотранспорта от примесей летучих органических соединений (ЛОС). Один из наиболее перспективных методов нейтрализации таких соединений - каталитическое окисление ЛОС с участием озона (ОЗКО) [1]. Благодаря высокой окислительной активности О3 ОЗКО позволяет эффективно удалять даже такие малореакционноспособные соединения, как алканы, при температурах 50-100°C [2]. В качестве катализаторов процесса ОЗКО обычно используются оксиды переходных металлов, нанесенные на различные оксидные или цеолитные носители, активность которых в окислении ЛОС непосредственно связывают с их способностью разлагать озон с образованием высокореакционноспособного атомарного кислорода О* [3]. Следует, однако, отметить, что систематические данные о зависимости каталитических свойств оксидов переходных металлов в ОЗКО от их активности в разложении


Сокращения и обозначения: озон-каталитическое окисление — O3KO; летучие органические соединения — ЛОС.

озона, полученные для широкого круга оксидов переходных металлов в идентичных условиях, на настоящий момент в литературе отсутствуют. В настоящем письме мы сообщаем о выявленных нами закономерностях, связывающих активность нанесенных оксидов переходных металлов 4 периода в разложении озона и ОЗКО *н*-бутана.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Нанесенные катализаторы, содержащие $10\,\mathrm{Mac}$. % оксида переходного металла, были приготовлены методом пропитки по влагоемкости водными растворами $\mathrm{VOC_2O_4}$, $\mathrm{Cr}(\mathrm{NO_3})_3\cdot 9\mathrm{H_2O}$, $\mathrm{Mn}(\mathrm{NO_3})_2\cdot 4\mathrm{H_2O}$, $\mathrm{FeCl_3\cdot 6H_2O}$, $\mathrm{Co}(\mathrm{NO_3})_2\cdot 6\mathrm{H_2O}$, $\mathrm{Ni}(\mathrm{NO_3})_2\cdot 6\mathrm{H_2O}$ Си $(\mathrm{NO_3})_2\cdot 3\mathrm{H_2O}$ и $\mathrm{Zn}(\mathrm{NO_3})_2\cdot 6\mathrm{H_2O}$. В качестве носителя использовали γ - $\mathrm{Al_2O_3}$ ($S_{\mathrm{BET}} = 250\,\mathrm{m^2/r}$, UOP , Versal Alumina VGL-25), предварительно прокаленный в токе воздуха при $550^{\circ}\mathrm{C}$. После пропитки образцы сушили при комнатной температуре, затем прокаливали в течение $3\,\mathrm{u}$ при $500^{\circ}\mathrm{C}$.

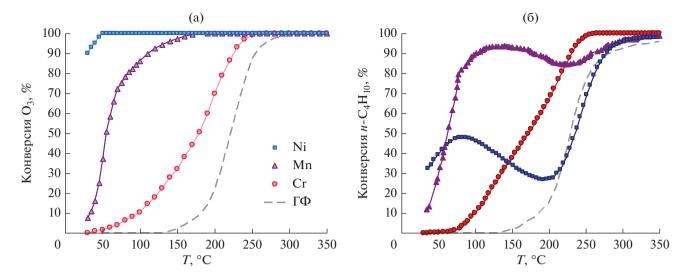
Структура катализаторов была исследована методами рентгенофазового анализа (ДРОН-4, НПП "Буревестник", Россия) и температурно-про-

Рис. 1. Температура 90% конверсии озона для оксидов переходных металлов, нанесенных на Al_2O_3 ($\Gamma\Phi$ — газофазное разложение O_3 в отсутствии катализатора).

граммированного восстановления (УСГА-101, ООО "Унисит", Россия). Для соответствующих образцов было установлено образование оксидов V_2O_5 , Cr_2O_3 , $Mn_2O_3+MnO_2$, Fe_2O_3 , CoO, NiO, CuO и ZnO.

ОЗКО бутана проводили на установке проточного типа, оснащенной трубчатым кварцевым реактором ($d_{\text{внутр}} = 10 \text{ мм}$) с неподвижным слоем катализатора. Подробное описание методики каталитического эксперимента приведено в [2].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ


Согласно современным представлениям о механизме ОЗКО, протекающего на поверхности оксида переходного металла [1], процесс включает две основные стадии. На первой озон разлагается на молекулярный кислород и его высокореакционноспособную атомарную форму О* на поверхности оксида, на второй происходит адсорбция ЛОС, его реакция с атомарным кислородом и образование продуктов окисления. Соответственно, процесс разложения O_3 является ключевой стадией ОЗКО и определяет его скорость.

В качестве критерия активности нанесенных оксидов V, Cr, Mn, Fe, Co, Ni, Cu, и Zn в процессе разложения O_3 использовали температуру дости-

жения 90% конверсии O_3 (T_{90}). Полученные данные (рис. 1) позволяют заключить, что при переходе от катализаторов, содержащих оксиды "ранних" переходных металлов, таких как V и Cr ($T_{90} = 260$, 235°C), к образцам на основе оксидов Mn, Fe, Co и Ni каталитическая активность в разложения озона значительно возрастает, и T_{90} снижается до 30-50°C. Для Cu- и Zn-содержащих катализаторов наблюдается повышение T_{90} , свидетельствующее о снижении их активности. Эти результаты указывают на то, что наибольшая скорость в разложении озона наблюдается для NiO/Al₂O₃, для которого, согласно [1], можно ожидать максимальной эффективности в O3KO n-бутана.

Было проведено сравнение каталитических характеристик образцов с высокой, низкой и промежуточной активностью в разложении озона (NiO/Al₂O₃, $T_{90} = 35$ °C; Cr_2O_3/Al_2O_3 , $T_{90} = 235$ °C и MnO_2/Al_2O_3 , $T_{90} = 115$ °C) с их свойствами в ОЗКО *н*-бутана. Как показали результаты экспериментов, взаимосвязь каталитических свойств исследуемых образцов в этих двух процессах носит сложный характер (рис. 2).

Для катализатора NiO/Al₂O₃, активность которого O₃ максимальна, действительно наблюдается наибольшая конверсия H-C₄H₁₀ при температуре

Рис. 2. Температурные зависимости конверсии озона в реакции его разложения (а) и конверсии *н*-бутана в ОЗКО (б) для катализаторов Cr_2O_3/Al_2O_3 , MnO_2/Al_2O_3 и NiO/Al_2O_3 . Пунктирная линия ($\Gamma\Phi$ – газофазное разложение) соответствует протеканию некаталитического процесса в газовой фазе.

35°С (~32%), тогда как катализатор Cr_2O_3/Al_2O_3 оказался неактивен. Для MnO_2/Al_2O_3 конверсия H- C_4H_{10} при 35°С не превышает 15%. Однако при повышении температуры выше 80°С степень превращения углеводорода на NiO/Al_2O_3 быстро снижается, и при $T_{\rm реакции} > 200$ °С конверсионный профиль полностью совпадает с таковым для газофазного процесса. Это указывает, что вклад O_3 -каталитического окисления становится пренебрежимо мал.

Оптимальные каталитические свойства проявляет MnO_2/Al_2O_3 , в присутствии которого конверсия $H-C_4H_{10}$ превышает 90% уже при 100° С, тогда как в случае катализатора Cr_2O_3/Al_2O_3 его низкая активность в разложении озона ожидаемо приводит к незначительной конверсии бутана в O3KO при $T \le 150^{\circ}$ С (рис. 2).

Полученные результаты можно объяснить, используя следующую схему протекания процесса O_3 -каталитического окисления углеводородов (схема 1):

$$O_3 \xrightarrow{I} O_2 + O^*$$

$$O^* + C_x H_v \longrightarrow CO_x + H_2 O$$

Схема 1. Маршруты протекания процесса ОЗКО углеводородов.

Поскольку необходимым условием реализации ОЗКО является образование атомарного кислорода О* (реакция I), то из-за низкой активности Cr_2O_3/Al_2O_3 в этой реакции при температурах

 $<80^{\circ}$ С окисления углеводорода не происходит. Напротив, высокая активность катализатора NiO/Al_2O_3 ведет к тому, что ОЗКО происходит уже в области 35—50°С. Однако образование О*, проходящее со значительной скоростью, сопровождается процессом его рекомбинации (реакция III) [4], который конкурирует с ОЗКО (II). В результате концентрация O_3 в реакционной смеси уменьшается, что приводит к снижению скорости ОЗКО (II). Наилучшие же каталитические характеристики имеет катализатор MnO_2/Al_2O_3 , оптимальная активность которого в реакции разложения озона способствует эффективному протеканию реакции ОЗКО.

ФИНАНСИРОВАНИЕ

Исследование выполнено при поддержке гранта Российского научного фонда № 23-13-00214, https://rscf.ru/project/23-13-00214/.

СПИСОК ЛИТЕРАТУРЫ

- Liu B., Ji J., Zhang B., Huang W., Gan Y., Leung D. Y.C., Huang H. // J. Hazard. Mater. 2022. V. 422. P. 126847.
- Mytareva A.I., Mashkovsky I.S., Kanaev S.A., Bokarev D.A., Baeva G.N., Kazakov A.V., Stakheev A.Y. // Catalysts. 2021. V. 11. P. 506.
- Lin F, Wang Z., Zhang Z., He Y., Zhu Y., Shao J., Yuan D., Chen G., Cen K. // Chem. Eng. J. 2020. V. 382. P. 123030.
- Einaga H., Maeda N., Nagai Y. // Catal. Sci. Technol. 2015. V. 5. P. 3147.

Decomposition and O₃-Catalytic Oxidation of n-C₄H₁₀

D. A. Bokarev¹, I. V. Paramoshin¹, S. A. Kanaev¹, and A. Y. Stakheev¹, *

¹N.D. Zelinsky Institute of Organic Chemistry RAS, Leninsky prospekt, 47, Moscow, 119991 Russia *e-mail: st@ioc.ac.ru

The activity of transition metal oxides (V, Cr, Mn, Fe, Co, Ni, Cu, Zn) deposited on γ -Al $_2$ O $_3$ in the ozone decomposition reaction has been studied. The catalytic characteristics of samples with high (NiO/Al $_2$ O $_3$), low (Cr $_2$ O $_3$ /Al $_2$ O $_3$) and intermediate (MnO $_x$ /Al $_2$ O $_3$) activity in ozone decomposition were studied in the process of ozone-catalytic oxidation (OZCO) of butane. The obtained results allow us to conclude that the optimal activity of transition metal oxide in the decomposition of O $_3$ is of key importance in the OZCO process. At a low rate of ozone decomposition, the oxidation of hydrocarbons is limited by the rate of formation of atomic oxygen, in the case of too high - the conversion of hydrocarbons is reduced due to the "inappropriate" process of recombination of atomic oxygen. The best catalytic characteristics in the oxidation of h C $_4$ H $_{10}$ have been established for a catalyst based on Mn oxide, which has optimal activity in the decomposition of O $_3$.

Keywords: ozone-catalytic oxidation (OZCO), transition metal oxides, heterogeneous catalysts, n-butane, Al_2O_3